
A Hybrid System for Warehouse Layout Planning
Based on Answer Set Programming and

Conditional Expert Knowledge

Andre Thevapalan1,3, Marco Wilhelm1, Gabriele Kern-Isberner1, Pascal
Kaiser2, and Moritz Roidl2

1 Dept. of Computer Science, TU Dortmund University, Germany
2 Dept. of Mechanical Engineering, TU Dortmund University, Germany

3 andre.thevapalan@tu-dortmund.de

Abstract. Planning warehouse layouts is a complex logistical task the
success of which heavily depends on the expertise of the warehouse de-
signer. A common strategy in warehouse layout planning is to begin by
allocating the main functional areas of the warehouse, also known as
block layout planning, before placing individual facilities. In this paper,
we propose a hybrid reasoning system to assist the warehouse designer
during the block layout planning process. In a first step, answer set pro-
gramming (ASP) is used to compute all feasible allocations of the func-
tional areas which are in compliance with technical domain knowledge
and instance-specific data. Afterwards, these allocations are rated based
on plausible logistical expert knowledge which is formalized in a condi-
tional knowledge base. This procedure passes into an iterative process
involving adaptations of the ASP program until “plausibly good” block
layouts are found or the user interacts with the system to provide further
guidance. The benefits of our approach are manifold. In particular, we
aim to accelerate the warehouse layout planning process and increase the
reproducibility as well as explainability of the final layouts.

Keywords: (preferred) answer set programming · conditionals · c-repre-
sentations · hybrid reasoning · warehouse layout planning.

1 Introduction

Planning layouts of warehouses is a crucial task in logistics because the warehous-
ing costs are determined by the warehouse layout to a large extent already [24].
The planning process is characterized by many trade-offs between conflicting
objectives with the overall goal of minimizing the operational costs [18] which
makes it a highly complex task that typically results in a large number of feasi-
ble layouts of varying quality. The finally realized layout heavily depends on the
warehouse designer’s expertise [34]. A common strategy to address the complex-
ity of warehouse layout planning is to start with a rough layout of the warehouse
before single facilities are placed [7]. In this first phase of the planning process
the main functional areas of the warehouse like the receiving, picking, storage,

2 A. Thevapalan et al.

and departure areas are arranged. It results in a block layout that is usually based
on maximizing the operational efficiency determined by the expected material
flow between the functional areas (also known as the facility layout problem,
cf. [7]). A block represents the region of a functional area then. This first phase
of the warehouse layout planning task is followed by the detailed planning of the
functional areas which involves the placement of facilities, storage spaces, paths
and so on.

In this paper, we focus on the block layout planning task and propose an
interactive hybrid reasoning system to assist the warehouse designer during the
planning process. Our system combines two well-established approaches from
the field of knowledge representation and reasoning, namely answer set pro-
gramming (ASP) [13, 12] and conditional reasoning [8, 1], and provides the user
with plausible arrangements of the functional areas within the warehouse. These
block layouts can then be refined and adapted to individual requests of the ware-
house designer. The benefits of our system include a speed-up of the planning
process through the automated solving of combinatorial allocation problems,
thus a reduction of the planning costs, as well as an increased reproducibility
and explainability of the final layouts because the logistical background knowl-
edge is made explicit in form of ASP rules and conditionals. This may help to
increase the acceptance of the layouts by the customer. Furthermore, our system
possibly leads to layout suggestions that can be easily overlooked by a human
planner due to the complexity of the problem.

In our hybrid reasoning system, answer set programming is used to describe
technical requirements to warehouse layouts and to calculate all feasible block
layouts which are in compliance with these requirements. ASP is a form of declar-
ative programming which is based on logical rules. Its main feature is the im-
plementation of default negation [5] which allows the user to formulate default
statements such as “H ← A, not B.” expressing that H follows from A unless
(the exceptional case) B holds. With the power of default negation and its highly
optimized solvers (cf. clingo, [10]), ASP is able to solve complex combinatorial
search problems. Similar to ASP rules, conditionals express defeasible statements
but call for a richer semantics which involves a notion of plausibility. A ranking
function κ accepts a conditional (B|A), meaning “if A holds, then usually B fol-
lows,” if the verification of the conditional is more plausible than its falsification,
in symbols if κ(A∧B) < κ(A∧¬B). Hence, conditionals are especially suited to
express preferences. Here, we use conditional reasoning to calculate a preference
ordering on the feasible block layouts computed with ASP in order to rate them
with respect to their quality. With conditional knowledge bases, we make the
logistical commonsense knowledge of warehouse designers explicit.

Up to now, for the facility layout problem no holistic computer-aided ap-
proaches are available [3] so that the planning of block layouts is usually done
by hand to a large extent. Current related research is mostly focused on com-
puting layouts using genetic algorithms [22, 28, 32] which have the disadvantage
of being a black-box approach, i.e., details on how a layout was formed can
generally not be determined. Recent work also utilizes fuzzy logic in connection

A Hybrid System for Warehouse Layout Planning 3

with user experience [2, 20] which, from a semantical viewpoint, is significantly
different from our hybrid reasoning approach. In their survey paper [27], the
authors mention knowledge-based systems developed to solve the facility layout
problem. Those systems are, however, built upon very limited forward chaining
inference techniques. While the authors in [26] use answer set programming in
the logistics domain to allow efficient cooperation between logistics robots, to the
best of our knowledge, the idea to use ASP in combination with sophisticated
conditional reasoning techniques to solve the facility layout problem has yet to
be explored. For an overview of research on facility layout problems, we refer the
reader to [23, 28]. Note that our approach on combining ASP and conditional
reasoning is not limited to the facility layout problem but is useful whenever
combinatorial problems can be expressed in form of logical, possibly defeasible
statements.

The rest of the paper is organized as follows. In Sec. 2 we settle the logical
foundations of our hybrid reasoning system, which involves a brief introduc-
tion to answer set programming and conditional reasoning. In Sec. 3 we recall
our approach on prioritizing answer sets based on conditional expert knowledge
from [33] and discuss related work. Afterwards, we specify the block layout plan-
ning problem in Sec. 4 and present our hybrid reasoning system in Sec. 5. In
Sec. 6 we evaluate our approach based on a typical real world problem, before
we conclude with an outlook in Sec. 7.

2 Logical Foundations

As a background language we consider a relational language L(Σ) [15] defined
over a signature Σ = (CΣ ,PΣ) where CΣ and PΣ are finite sets of constants
and predicates respectively. Formulas in L(Σ) are either atoms, i.e., predicates
of arity n together with an n-tuple of constants or variables, or they are recur-
sively defined as negations ¬A, conjunctions A∧B, or disjunctions A∨B where
A,B ∈ L(Σ). A literal is an atom or its negation. An expression (atom, literal,
formula, etc.) is ground if it does not mention variables. A ground formula is
called a sentence. The semantics of sentences is given by interpretations mapping
them to 0 or 1 as usual. We abbreviate ¬A with A, A ∧ B with AB, and de-
note arbitrary tautologies A∨A with ⊤ and arbitrary contradictions AA with ⊥.

Answer Set Programming Answer set programming (ASP) [13, 12] is a logic-
based declarative programming language with the default negation “not” [5] as
its main feature. An ASP program, or program for short, is a finite set of rules

r : H ← A1, . . . , Ak, not B1, . . . , not Bl., (1)

where H,A1, . . . , Ak, B1, . . . , Bl are literals from L(Σ). Rules without body liter-
als, i.e., rules of the form (1) with k = l = 0, are called facts and are abbreviated
as “H.”. Rules without a head literal H are constraints. If a rule mentions a vari-
able, then it is understood as a schema and has to be grounded before solving
the program. The grounding of a rule r means the syntactical replacement of

4 A. Thevapalan et al.

each variable in r by a constant from CΣ . A ground rule of the form (1) can be
read as: “If the positive body literals A1, . . . , Ak hold and it can be assumed that
the default-negated body literals B1, . . . , Bl do not hold, then the rule head H
follows.” The assumption that Bj does not hold does not mean that its com-
plement Bj has to be true; it is also appropriate that the truth value of Bj is
unknown which differentiates the default negation “not” from the classical nega-
tion “¬”. The grounding Pg of a program P is obtained by replacing all rules
that mention variables by all of their possible groundings. The formal semantics
of ASP programs is defined based on their Gelfond-Lifschitz-reduct [14]: Let P
be a ground program, and let S be a state which is a consistent set of ground
literals from L(Σ), i.e., there is no ground atom A ∈ L(Σ) with {A,A} ⊆ S.
Then, the Gelfond-Lifschitz-reduct of P wrt. S is the program4

PS = {H ← A1, . . . , Ak. | H ← A1, . . . , Ak, not B1, . . . , not Bl. ∈ P
and ∀j ∈ [l] : Bj /∈ S}.

The reduct PS is a classical logic program free of default negation. Such pro-
grams provide a unique minimal model which we denote with Cl(PS) and which
can be obtained by recursively applying the rules in PS , beginning with the facts.
In other words, Cl(PS) is the inclusion minimal set of ground literals so that for
all rules r : H ← A1, . . . , Ak. in PS , if A1, . . . , Ak ∈ Cl(PS), then H ∈ Cl(PS).
Based on this, S is called an answer set (= model) of P if Cl(PS) = S. Unlike
classical logic programs, ground ASP programs may have several models, or also
none. With AS(P) we denote the set of all models (answer sets) of P. The an-
swer sets of a non-ground ASP program P are the answer sets of its grounding,
i.e., AS(P) = AS(Pg). A program P is consistent iff AS(P) ̸= ∅.

Conditional Reasoning A conditional (B|A) where A and B are sentences
from L(Σ) is a syntactic representation of the defeasible statement “if A holds,
then usually B follows,” where the formal semantics of “usually” has to be made
precise. So-called open conditionals (B|A) where A or B contains free vari-
ables are understood as schemata here. Before evaluating them they have to
be grounded by a proper instantiation through constants like rules in ASP. Fi-
nite sets of conditionals are called knowledge base. Throughout the paper, we
enumerate the conditionals in knowledge bases ∆ and refer to the i-th condi-
tional in ∆ with δi = (Bi|Ai). In addition, we allocate n = |∆|. The formal
semantics of conditionals is based on possible worlds. Here, possible worlds are
the interpretations from L(Σ) represented as complete conjunctions of ground
literals. Each ground atom from L(Σ) occurs in a possible world ω once, ei-
ther positive or negated. The set of all possible worlds is denoted by Ω(Σ). A
ranking function [29] is a mapping κ : Ω(Σ)→ N∞

0 which assigns to every possi-
ble world a degree of implausibility while satisfying the normalization condition
κ−1(0) ̸= ∅. The higher its rank κ(ω), the less plausible a possible world ω is.
Ranking functions are extended to sentences via κ(A) = minω∈Ω(Σ) : ω|=A κ(ω)

4 We abbreviate [l] = {1, . . . , l} with the special case [0] = ∅.

A Hybrid System for Warehouse Layout Planning 5

and accept a conditional (B|A) iff κ(AB) < κ(AB), i.e., iff the verification AB
of the conditional is more plausible than its falsification AB. A ranking func-
tion κ is a ranking model of a knowledge base ∆ iff κ accepts all conditionals
in ∆. If a knowledge base ∆ has a ranking model, then it is called consistent. An
elaborate, principle-based class of ranking models is constituted by the so-called
c-representations [17]. A ranking function κ is a c-representation of ∆ if κ is a
ranking model of ∆ and there is η ∈ Nn

0 such that

κ(ω) =
∑

δi∈fal∆(ω)
ηi, ω ∈ Ω(Σ),

where fal∆(ω) = {δi ∈ ∆ | ω |= AiBi} is the set of conditionals from ∆ which
are falsified in ω. We write κ = κη

∆ in this case. The value ηi can be understood
as a penalty point for falsifying the i-th conditional from ∆. If a knowledge base
is consistent, then it also has a c-representation.

3 Preferred ASP via Conditional Expert Knowledge

Applying answer set programming to real world problems can lead to a vast
number of answer sets which are not necessarily equally meaningful. This is par-
ticularly the case when “soft constraints” play a role, the purpose of which is
not to constrain the answer sets, but to imply preferences among them. Soft
constraints cannot be formalized in pure ASP, though. In our hybrid reasoning
system, we make use of our approach first presented in [33] in order to rate an-
swer sets. We briefly recall this approach and discuss related work afterwards.

Combining ASP and Conditional Reasoning In line with [33], let P be
an ASP program, and let ∆ be a consistent knowledge base which formalizes
plausible expert knowledge about the domain considered in P. The signatures
of P and ∆ may differ but are intended to have a significant overlap. Further,
let κ be a ranking model of ∆. For each answer set A of P we compute its κ-rank

κ(A) := κ(
∧

l∈A
l)

and say that A is preferred to A′ ∈ AS(P) if κ(A) < κ(A′), and that A and A′

are equally preferred if κ(A) = κ(A′). Therewith, we establish a preference pre-
order on AS(P), which reflects the plausibility of the answer sets of P with
respect to the expert knowledge in ∆. The most preferred answer sets A of P
are those with κ(A) ≤ κ(A′) for all A′ ∈ AS(P), i.e.,

mprefκ(P) := {A ∈ AS(P) | ∀A′ ∈ AS(P) : κ(A) ≤ κ(A′)}. (2)

This set is non-empty by construction. We give a simple yet generic example
which illustrates the approach.

Example 1. Let the ASP program P = {r1, . . . , r4} with

r1: s., r2: c← s., r3: p← c, not p., r4: p← s, not p.,

6 A. Thevapalan et al.

state that class c instances show property p unless proven wrong (r3) while
instances of the subclass s of c (r2) normally show the opposite of property p (r4).
In addition, rule r1 states that we reason about the subclass s. For instance, you
can think about birds, which constitute a subclass of living beings and usually
are able to fly, while living beings in general usually do not fly. The answer sets
of P are A1 = {c, s, p} and A2 = {c, s, p} which means that we infer from P
that instances of s and, therewith, of c may or may not show property p. This
inference is very cautious because intuitively we would assume that the more
specific information that subclass s instances usually do not show property p
outweighs the information that general instances of class c do show property p.
In other words, one would assume that subclasses inherit properties from their
superclasses only until more specific information about the subclass is known.
However, the fact that s forms an exceptional subclass of c with respect to
property p is not fully reflected by P. The point here is that the rules r3 and r4
are applied without any precedent.

Following the approach from [33], we can formulate the knowledge about s
being an exceptional subclass of c with respect to p explicitly in form of the
knowledge base ∆ = {δ1 : (s|cp)} (“if an instance of class c shows property p,
then it is usually not an instance of subclass s”). The c-representation κη

∆ of ∆
with the smallest possible penalty point η1 = 1 assigns the ranks κη

∆(csp) = 1
and κη

∆(ω) = 0 for ω ̸= csp. Hence, κη
∆(A2) = 0 < 1 = κη

∆(A1) and A2 is
preferred to A1 due to the general knowledge in ∆.

Most preferred answer sets A of P do not necessarily satisfy κ(A) = 0. This
means that soft constraints do not necessarily have to hold in most preferred
answer sets. The idea of most preferred answer sets is rather to satisfy all rules
in P and be in compliance with ∆ as good as possible.

Related Work on Preferred ASP In the last decades, several further ap-
proaches on prioritized resp. preferred ASP have emerged [4, 6, 21, 31, 25, 35].
Most of them, like the leading approach from [4], require an ordering on the
rules in the ASP program as an additional input in order to rate the answer
sets.

Example 2. Following the approach from [4], the fact that in Example 1 s is an
exceptional subclass of c with respect to p is implicitly realized by preferring the
application of r4 (the information about the subclass s) to r3 (the information
about the class c). Rules that are preferred have to be applied first, which, in
this case, also leads to the unique preferred answer set A2.

Compared to [4], the approach from [33] has some advantages with respect to
our application to the warehouse layout planning task: (1) While the approach
from [4] returns a single most preferred answer set, the approach from [33] leads
to a preference ordering on the whole set of answer sets AS(P). In particular,
there may be several most preferred answer sets which can be presented to the
user as plausible alternatives. (2) The calculation of the preference ordering
on AS(P) according to [33] can automatically be inferred from the knowledge

A Hybrid System for Warehouse Layout Planning 7

Functional area Functional area

asps Automatic small parts storage op Order picking area
con Consolidation area ps Packing station
dep Departure area rc Receiving area
hbs High-bay storage sps Special parts storage

Table 1: Overview of the functional areas considered in this paper.

base ∆, while in [4] the ordering on the rules in P has to be established by hand.
Especially if P is large or P has to be updated, setting up the ordering on the
rules manually can become a difficult task. (3) The expert knowledge which gave
reason to prefer specific ASP rules resp. answer sets can be made explicit in the
knowledge base ∆, and the preferences can be derived from that. This improves
the transparency of the prioritization and generates generic justifications for
explanations. In addition, technical domain knowledge and expert knowledge
can be clearly separated into P and ∆.

4 Block Layout Planning

We specify the task of block layout planning which we aim to solve with our
hybrid reasoning system. Under block layout planning, we understand the task
of arranging the functional areas of a warehouse which are relevant for the ware-
housing process within an empty floor plan. Hereby the warehouse is specified
by its surrounding walls as well as further structural components such as gates
and areas which are not directly relevant for the warehousing process. The set
of functional areas may depend on the warehouse type but is committed in this
paper to those areas that are listed in Tab. 1 and which comprise typical func-
tional areas of various warehouse types. The allocation of the functional areas
is subject to more or less strict restrictions. Strict resp. technical restrictions
have to be satisfied in any case to obtain a feasible layout. Typical technical
restrictions are:

T1 The functional areas must fit into the warehouse.
T2 The size of a functional area may not fall below a lower bound. This minimal

size of the functional area is the result of the required throughput of goods
in the warehouse and can be computed in advance (cf. [16] for computation
methods).

T3 Functional areas have to be connected.
T4 Some functional areas like the receiving area, the departure area, and the

special parts storage require a direct access to gates.
T5 Reserved areas of the warehouse have to be kept empty.
T6 Individual wishes of the customer have to be considered.

Some further requirements impact the operational efficiency of the warehouse
or other planning goals but are rather quality criteria for preferred warehouse

8 A. Thevapalan et al.

sps rc asps

dep con

ps op

hbs

(a) Prototypical block layout.

a1 a2 a3

a4

a5

a6 a7

(b) Possible refinements of initial zoning.

Fig. 1: Warehouse asse from Ex. 3.

layouts than hard constraints. These “plausible constraints” are typically part
of the warehouse designer’s expert knowledge and rarely formalized. In the first
place, plausible constraints arise from the required material flow between the
functional areas. Functional areas with a high material flow in-between should be
placed next to each other. For example, it is plausible to place the consolidation
area where packed goods are assembled to an order next to the departure area.
Here, we consider the following plausible expert knowledge:

P1 Functional areas with high material flow in-between are usually next to each
other. This particularly holds for the material flow chain “asps → op →
ps → con → dep” which is relevant for the taking out of the warehouse.

P2 Functional areas usually have gates only if they need them and gates are
usually solely next to functional areas that need gates.

Example 3. A floor plan of the warehouse asse (“another supplier storing every-
thing”), which is actually a real world example of a warehouse, with a possible
realization of a block layout is shown in Fig. 1a. The gray area is the area of the
warehouse which shall be filled with the functional areas. The red area in the
upper right is an attached building that is reserved for the automatic small parts
storage. The other red area marked with a cross is not part of the warehous-
ing area but provides facilities for the workers. Gates are indicated by dashed
lines. The warehouse has a total size of 72, 450m2 and the minimal sizes of the
functional areas were computed by a logistics expert to:

size(asps) ≥ 4, 500m2, size(con) ≥ 4, 800m2,
size(dep) ≥ 9, 500m2, size(hbs) ≥ 19, 000m2,
size(op) ≥ 9, 000m2, size(ps) ≥ 1, 100m2,
size(rc) ≥ 6, 000m2, size(sps) ≥ 8, 000m2.

5 Hybrid Reasoning System for Block Layout Planning

We present our hybrid reasoning system based on ASP and conditionals devel-
oped to assist warehouse designers during the block layout planning (cf. Sec. 4).

A Hybrid System for Warehouse Layout Planning 9

Algorithm 1 General functionality of our hybrid reasoning system
Input: ASP program P and ranking model κ of ∆ formalizing the block

layout planning task
Output: Set of block layouts L

1 L = ∅
2 while L is not accepted:
3 compute feasible allocations AS(P)
4 filter preferred allocations mprefκ(P)
5 L = “rendered allocations encoded in mprefκ(P)”
6 if L does not contain ambiguous zones: system accepts L
7 else refine zoning and adapt P
8 if size of zone gets under user-defined threshold: ask user to accept L
9 return L

First, we give an overview of the system and then go into the details of the
workflow (cf. Alg. 1).

Overview The ultimate goal of our system is to find a zoning of the warehouse
for which most plausible assignments of the functional areas (Tab. 1) to the
zones exist which satisfy all required constraints as best as possible. Given an
empty floor plan and an initial division of this plan into zones, we calculate with
ASP all feasible allocations of the functional areas to the zones. The functional
areas may be allocated to several zones, and zones may house several functional
areas. Afterwards, we rate these allocations based on a conditional knowledge
base comprising logistical expert knowledge about block layout planning. If in
all most preferred allocations, each zone hosts at most one functional area, then
these most preferred allocations are presented to the user as plausible alternatives
for block layouts of the warehouse. Otherwise, there is at least one zone with an
ambiguous allocation of functional areas. In this case, we automatically refine
the zoning and start the process anew such that the computations pass into an
iterative process. Notice that in interaction with the user we allow to end the
process prematurely if the size of zones gets under a user-defined threshold. By
this we prevent that zones in a layout get too fine-granular which as a result
can lead to a vast amount of very similar and thereby (for the user) redundant
solutions. The user can also inspect the latest layouts and decide to continue the
process or appropriately adapt the instance data and restart the process anew.

Our system requires the user to provide an initial zoning of the warehouse.
This zoning does not have to be a suggestion for a possible block layout already
but may be much coarser. With the initial zoning, the user can counter technical
constraints such as T5 and T6 (Sec. 4) and additional requirements like fire
protection specifications, for instance. A technical constraint to zonings is that
the refinement process requires rectangular zones.

In the following, we describe the single components of our system in detail,
starting with the allocation process implemented in ASP. We discuss the auto-
matic evaluation of the allocations based on conditional expert knowledge, the

10 A. Thevapalan et al.

iterative zone refinement which comes along with some adaptations of the ASP
program to reduce computational complexity, and finally the abortion condition,
hence the termination of our approach.

Allocation of Functional Areas to Zones With ASP We use an ASP pro-
gram P to compute feasible allocations of functional areas in a given warehouse.
We distinguish between instance data given as facts and the problem encoding.
With the instance data, the warehouse is modeled as a set of zones that have a
size, possibly a gate, and that can be adjacent to each other. A functional area
has a minimal space requirement and possibly needs access to a gate.

Example 4. Consider the instance data (cf. Tab. 1 for abbreviations)

zone(a1)., size(a1, 2000)., has_gate(a1).,

zone(a2)., size(a2, 10000)., adjacent(a1, a2).,

fa(hbs)., min_size(hbs, 11000).,

fa(rc)., min_size(rc, 1000)., needs_gate(rc).,

where the two zones a1 and a2, with sizes of 2, 000m2 and 10, 000m2, respec-
tively, are defined. Both zones are adjacent, and zone a1 includes access to gates.
The instance states that the two functional areas hbs and rc with a space require-
ment of 11, 000m2 and 1, 000m2, respectively, must be allocated. In this, the
functional area rc has to have access to gates. Note that these requirements are
jointly satisfiable only if hbs is distributed over both zones. In principle, rc could
be distributed over both zones, too, but this is not mandatory and intuitively
less plausible.

In the problem encoding, the goal of the program is to compute possible allo-
cations of functional areas to zones. We allow a functional area to be distributed
across multiple adjacent zones and for a zone to contain (parts of) multiple func-
tional areas. Adding constraints T1–T6 to the program ensures that unfeasible
layouts are filtered out. Each answer set then contains a viable position for each
functional area in the warehouse, represented by one or more zones. In our ap-
proach, only subset-minimal answer sets are considered, ensuring that functional
areas are not spread across more zones than necessary to satisfy T2. In the fol-
lowing excerpt of the program, you can find the rule that models the allocations
(also called the generating part, rule (3)) and two constraints corresponding to
T4 and T5 (testing part, rules (4) and (5)):

{assign(F ,Z)} ← fa(F), zone(Z). (3)
← needs_gate(F), assign(F ,Z), not has_gate(Z). (4)
← assign(_,Z), blocked(Z). (5)

Rule (3) is a so-called choice rule which states that in each answer set for every
functional area F and zone Z the atom assign(F ,Z) is either true or false.

A Hybrid System for Warehouse Layout Planning 11

Example 5. For the instance data from Example 4, our ASP program would out-
put a unique answer set that includes the literals assign(a1, rc), assign(a1, hbs),
and assign(a2, hbs), meaning that rc is assigned to the zone a1 and hbs is as-
signed to a1 and a2.

Notice that a1 contains multiple functional areas and is therefore possibly
not precise enough for the expert. Hence, in an iterative process, we split zones
to obtain more accurate allocations. This zone refinement is discussed later on.

Evaluation of the Allocations Based on Conditional Expert Knowledge
Once all feasible allocations of the functional areas to the zones are computed
with ASP, they are rated based on plausible logistical expert knowledge which
is implemented in a conditional knowledge base ∆. The input of this evaluation
component is the set AS(P) describing the assignments of the functional areas
to the zones, mentioning the zones which have gates, as well as giving the infor-
mation which zones are adjacent. In addition, the evaluation component needs a
list of the functional areas which need gates and a list of the tuples of functional
areas with expected high material flow in-between. The output is the set of the
most preferred allocations mprefκη

∆
(P) then (cf. (2)) where κη

∆ is a c-representa-
tion of ∆. The expert knowledge in ∆, here the plausible constraints P1 and P2
(cf. Sec. 4), is generic in the sense that it applies to the task of planning a block
layout wrt. any warehouse instance. Besides the strict separation of instance
data and general domain knowledge, the benefit of considering purely generic
knowledge at this point is that we can prepone and reuse the usually computa-
tionally expensive computation of κη

∆. The plausible constraints P1 and P2 are
realized in ∆ by the following conditional schemata:

– (∃i, j.adj(i, j)∧ass(X, i)∧ass(Y, j)|hMF(X,Y)) — “Functional areas with high
material flow in-between are usually next to each other.”,

– (∃X.needsG(X)∧ass(X, i)|hasG(i)) — “Zones with gates usually house a func-
tional area which needs gates.”,

– (¬ass(X, i)|hasG(i)∧¬needsG(X)) — “Zones with gates usually do not house
functional areas which do not need gates.”,

where the variables X,Y range over the set of functional areas and the vari-
ables i, j range over the zones. The additional conditional schemata in ∆,

– (∃≤1i.ass(X, i)|⊤) — “Functional areas are usually assigned to at most one
zone.”,

– (∃≤1X.ass(X, i)|⊤) — “Zones usually house at most one functional area.”,

push the iteration process towards the preferred one-to-one correspondence be-
tween functional areas and zones. Provided that there are at least two zones,5
the c-representation κη

∆ with minimal impact vector η is given by η = (1, . . . , 1).
That is, every falsification of any of the conditionals in ∆ is penalized with 1

5 In case of only one zone, there is trivially only one feasible layout (if any) which
assigns all functional areas to this zone.

12 A. Thevapalan et al.

by κη
∆. In this case, mprefκη

∆
(P) is the set of the answer sets (= feasible allo-

cations) which falsify the least number of conditionals from ∆. By tracing back
which conditionals are falsified by an answer set and which are not, we can give
explanations for the rating of the respective allocations.

Iterative Zone Refinement If the allocation of the functional areas to the
zones leads to ambiguities in the most preferred allocations, the computation
passes into an iterative process, i.e., the zoning is refined and passed to the
ASP solver again. Hereby, we call a zone ambiguous if there is a most preferred
allocation which assigns more than one functional area to this zone, and we
call it unambiguous otherwise. In the following, we explain how we store and
refine the zoning. A necessary precondition of our approach is that the zones are
rectangular. Therewith, they can be stored as tuples of their four bounding sides
(left, top, right, and bottom side). Each side is divided into sections (intervals),
depending on their functionality (a section is either a wall, a gate, or a transition
between zones). Technically, sides are stored as tuples again, where each entry
of the side reflects a section and consists of the starting and the end point of
the section as well as a description of its functionality. When the most preferred
allocations of functional areas to the zones have been computed and zoning
refinement is necessary, we proceed as follows: Every unambiguous zone remains
unchanged. To ambiguous zones, we apply the following refinement steps:

– Divide the zone along the perpendiculars, relative to the two facing bounding
sides that are longer than the others (or relative to any side of the zone if
the zone is quadratic), which go through the starting or ending point of any
section of the sides unless the perpendicular intersects the relative interior
of a section (1) which has the functionality “gate”, or (2) which has the
functionality “transition between zones” and does not span the whole side.

– If the previous step does not lead to a refinement of the zone because one
of the two exceptions applies (and the zone is not quadratic), then try the
same with the pair of the shorter sides.

– If the previous two steps do not lead to a refinement, divide the zone along
the perpendicular bisector of the two facing sides which are longer than the
others (or along both perpendicular bisectors wrt. all sides of the zone if the
zone is quadratic) unless one of the exceptions (1) or (2) applies.

– If the previous step does not lead to a refinement of the zone, then try the
same with the pair of the shorter sides.

Only if for all zones these steps do not lead to a refinement of the zone,
then apply them without exception (2) to all ambiguous zones. Only if this does
not lead to a refinement, too, then apply the refinement steps to the ambiguous
zones while omitting exception (1) as well.

Example 6. Fig. 1b shows a possible zoning of the asse warehouse (black borders)
and all possible refinements (dashed red lines). Note that both a1 and a2 are
divided across the shorter sides as the longer sides have gates. Furthermore, a7
can be divided into three sections because of the borders of a5 and a6.

A Hybrid System for Warehouse Layout Planning 13

A general strategy of our zone refinement is to keep the number of zones
small. On the one hand, this is necessary to prevent an exponential blow up
when computing feasible allocations of functional areas to zones with ASP which
can quickly become intractable. On the other hand, the zones shall not be con-
fused with a grid which we place over the floor plan. The basic idea is that the
zones shall adapt to the block layout as far as possible. At the end, when the
iteration terminates and the final block layouts are generated, neighboring zones
with the same functional area can be merged to a single zone such that there is
a one-to-one correspondence between functional areas and zones (recall that we
require zones which house the same functional area to be adjacent).

ASP Adaptations In our approach, the instantiated program P is adapted
in each iteration step in two ways. First, the zone refinement is applied to P
by replacing ambiguous zones by their refinements. The more zones the floor
plan is divided into, the more feasible allocations of functional areas to zones
can be expected. Hence, finer zonings result in greater computational costs, in
particular in the ASP part of our system, and there is a need to counteract this
computational blowup. Because of this, we additionally adapt the ASP program
as follows. In each iteration step i, we memorize for each zone z the different
functional areas FAz ,i that were assigned to it over all preferred models. In the
subsequent iteration i + 1 only functional areas that belong to FAz ,i can be
assigned to zones that arose from z. The reduction of assignable functional areas
per zone is encoded using ASP integrity constraints which, as described in [9],
serve to filter out unwanted answer sets.

Example 7 (Ex. 5 contd.). Suppose that the refinement process splits zone a1
into a1l and a1r. As only the areas hbs and rc were assigned to the original
zone a1, after the refinement process, the following constraints are added to the
testing part:

← assign(a1l,Z),Z !=hbs,Z != rc.

← assign(a1r,Z),Z !=hbs,Z != rc.

The constraints in Ex. 7 ensure that either hbs or rc, both, or none of these
areas can be assigned to a1l and a1r. Adding such constraints represent a heuris-
tic extension to the system that allows to ignore assignments that were already
recognized as non-preferable.

Abortion Condition and Termination The refinement process ends if either
(1) at most one functional area is assigned to each zone or, (2) if the size of
a zone drops under a certain threshold and the expert wishes to manually end
the process because of that. The value of such a threshold can be stated by
the user via the instance data. With (2) the expert is able to inspect the latest
results and stop the process if they are already satisfied with the preliminary
preferred layouts. In practice, the expert is able to manually refine remaining
ambiguous zones in a layout more efficiently and avoid higher computation times

14 A. Thevapalan et al.

a1: sps a2: rc a3:
asps

a4: dep,con

a5:
ps

a7: op, hbs

(a) After iteration 1.

a1: sps a2: rc
a3:
asps

a4ll:
dep

a4lrt:
dep

a4lrb:
dep,
con

a4r:
con

a5:
ps a7t: op

a7bt: hbs

a7bb: hbs

(b) After final iteration 4.

Fig. 2: Examples of most preferred allocations of functional areas for the ware-
house asse from Ex. 3.

than necessary. With (1) and (2) it is guaranteed that the refinement process
terminates, either because the preferred layouts only contain unambiguous zones,
or because it is stopped manually by the expert.

6 Evaluation and Explanations

We illustrate our hybrid reasoning system using the warehouse asse as introduced
in Ex. 3. The goal is to find the most suitable allocations of the functional areas in
Tab. 1 to positions in the warehouse according to the modeled expert knowledge.
For that we start with the initial zoning as shown in Fig. 1b. Note that zone a6 is
blocked, i.e., no area can be allocated to it and it is therefore not considered for
further refinements (cf. T5). Furthermore, we define that the refinement should
stop if a zone gets smaller than 2% of the warehouse size and want to respect
the user-defined assignment of the automatic small parts storage (asps) to a3
(cf. T6). As a consequence, neither will asps be assigned to other zones than a3
nor will any other functional area be assigned to a3. As illustrated in Alg. 1,
in each iteration step feasible and preferred allocations are computed and the
ASP program P is adapted based on these results. The number of feasible (most
preferred) allocations are: 14, 977 (3) after iteration 1, 116 (1) after iteration 2,
3 (1) after iteration 3, and 2 (2) after iteration 4. Fig. 2 shows two allocations
that are computed during the iteration process.

After the first iteration, we observe three preferred allocations which show
two ambiguous zones, a4 and a7 (Fig. 2a shows one of the preferred alloca-
tions). Accordingly, these zones are refined which results in two new zones that
replace a4 and three new zones that replace a7 (cf. Fig. 1b). Additionally, the
program P is extended with constraints that encode that only dep and/or con
can be assigned to the zones originating from a4. Similarly, any refinement of a7
can only house op and/or hbs. The allocation from Fig. 1b is preferred because
it has rank 3 and there is no feasible allocation with a lower rank. The rank is 3
because three conditionals from ∆ (cf. Sec. 5) are violated: a4 and a7 mention

A Hybrid System for Warehouse Layout Planning 15

more than one functional area, and a4 has gates while housing con which does
not need gates. By comparing these violations with those of the other allocations
we can principally explain why the allocation from Fig. 1b is preferred. While
the refinement of a7 after the first iteration leads to unambiguous zones already
(zones a7t, a7bt, and a7bb in Fig. 2b), the two new zones which replace a4 have
to be split further in the next iterations. After iteration 4, we obtain two al-
locations which both are preferred. Each of them still has an ambiguous zone,
either a4lrb (cf. Fig. 2b) or a4lrt. Splitting these zones would lead to zone sizes
under the defined threshold of 2%. Consequently, we stop the refinement process
and display the allocations to the user (Line 8 of Alg. 1). At this point it can
be more efficient to let the expert apply final refinements manually. A possible
outcome is realized in the block layout visualized in Fig. 1a.

7 Conclusion

We proposed a knowledge-based hybrid reasoning system developed to assist
warehouse designers during the planning of warehouse layouts. Given an empty
floor plan of a warehouse and specific requirements regarding the desired ma-
terial flow, our system computes “plausibly good” allocations of the functional
areas which are relevant for the warehousing process, i.e., it produces so-called
block layouts, which can then be filled with facilities in a second planning phase.
Our system makes use of two well-established approaches from the field of knowl-
edge representation and reasoning, namely answer set programming (ASP) and
conditional reasoning with ranking functions. With ASP all feasible allocations
of the functional areas with respect to an initial zoning of the warehouse are
computed. Afterwards, the plausibilities of these allocations are rated based on
a conditional knowledge base comprising logistical expert knowledge. Therewith,
either feasible block layouts are produced or the computations pass into an it-
erative process with a refined zoning of the warehouse and an adaptation of the
ASP program. Beyond its logistical benefits, such as speeding up the planning
process and increasing transparency, our system demonstrates the potential of
combining ASP and semantic conditional reasoning.

In future work, we want to broaden the evaluation of our approach including
further comparisons of the produced block layouts of our system against human-
designed layouts in order to fine-tune the system. We also want to combine it
with automatizations of the fine-planning of the functional areas (cf. [30]). From
the computer science perspective, we want to more strongly interconnect ASP
and conditional reasoning, e.g., by excluding implausible allocations of functional
areas before they have to be computed with ASP. Finally we plan to expand the
interactive component of the system to allow the user to guide the search process
using additional expert knowledge and efficiently find the most suitable layouts.

Acknowledgements This work was supported by Grant KE 1413/14-1 of the
German Research Foundation (DFG) awarded to Gabriele Kern-Isberner.

16 A. Thevapalan et al.

References

1. Adams, E.W.: The logic of conditionals. Inquiry: An Interdisciplinary Journal of
Philosophy 8(1-4), 166–197 (1965)

2. Altuntas, S., Selim, H., Dereli, T.: A fuzzy DEMATEL-based solution approach
for facility layout problem: a case study. Int. J. Adv. Manuf. Technol. 73(5-8),
749–771 (Jul 2014)

3. Beyer, T., Göhner, P., Yousefifar, R., Wehking, K.H.: Agent-based dimensioning to
support the planning of intra-logistics systems. In: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA). pp. 1–4
(2016)

4. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif.
Intell. 109(1-2), 297–356 (1999)

5. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches
de Toulouse, France, 1977. pp. 293–322. Advances in Data Base Theory, Plemum
Press, New York (1977)

6. Delgrande, J., Schaub, T., Tompits, H.: Logic programs with compiled preferences.
In: Horn, W. (ed.) ECAI 2000, Proceedings of the 14th European Conference on
Artificial Intelligence, Berlin, Germany, August 20-25, 2000. pp. 464–468. IOS Press
(2000)

7. Dukic, G., Opetuk, T.: Warehouse Layouts, pp. 55–69. Springer London, London
(2012)

8. Finetti, B.d.: La logique de la probabilité pp. 31–39 (1936)
9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-

tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2012)

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

11. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The potsdam answer set solving collection. AI Commun. 24(2), 107–
124 (2011)

12. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.)
Handbook of Knowledge Representation, Foundations of Artificial Intelligence,
vol. 3, pp. 285–316. Elsevier (2008)

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, USA, August 15-
19, 1988 (2 Volumes). pp. 1070–1080. MIT Press (1988)

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

15. Genesereth, M., Kao, E.J.: Relational Logic, pp. 63–81. Springer International
Publishing, Cham (2017)

16. Gudehus, T.: Logistik 2. Springer Berlin Heidelberg (2012)
17. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-

vation in belief revision. Ann. Math. Artif. Intell. 40(1-2), 127–164 (2004)
18. Kovács, G.: Warehouse design - determination of the optimal storage structure.

Acta Technica Corviniensis - Bulletin of Engineering (2017)
19. Lifschitz, V.: Answer Set Programming. Springer (2019)

A Hybrid System for Warehouse Layout Planning 17

20. Lin, Q., Wang, D.: Facility layout planning with shell and fuzzy ahp method
based on human reliability for operating theatre. Journal of Healthcare Engineering
2019, 1–12 (2019)

21. Nieuwenborgh, D.V., Vermeir, D.: Preferred answer sets for ordered logic programs.
Theory and Practice of Logic Programming 6(1-2), 107–167 (2006)

22. Pournaderi, N., Ghezavati, V.R., Mozafari, M.: Developing a mathematical model
for the dynamic facility layout problem considering material handling system and
optimizing it using cloud theory-based simulated annealing algorithm. SN Appl.
Sci. 1(8) (Aug 2019)

23. Pérez-Gosende, P., Mula, J., Díaz-Madroñero, M.: Facility layout planning. an
extended literature review. International Journal of Production Research 59(12),
3777–3816 (2021)

24. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G., Mantel, R., Zijm,
W.: Warehouse design and control: Framework and literature review. European
Journal of Operational Research 122(3), 515–533 (2000)

25. Sakama, C., Inoue, K.: Prioritized logic programming and its application to com-
monsense reasoning. Artificial Intelligence 123(1-2), 185–222 (2000)

26. Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., Schaub, T.: Asp-based
time-bounded planning for logistics robots. Proceedings of the International Con-
ference on Automated Planning and Scheduling 28(1), 509–517 (Jun 2018)

27. Shouman, M., Nawara, G., Reyad, A., El-Darandaly, K.: Facility layout problem
(flp) and intelligent techniques: a survey. In: 7th International Conference on Pro-
duction Engineering, Design and Control, Alexandria, Egypt, February (2001)

28. Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout
problems. Int. J. Adv. Manuf. Technol. 30(5-6), 425–433 (Sep 2006)

29. Spohn, W.: The Laws of Belief - Ranking Theory and Its Philosophical Applica-
tions. Oxford University Press (2014)

30. Thevapalan, A., Wilhelm, M., Kern-Isberner, G., Kaiser, P., Roidl, M.: An in-
teractive modelling environment for designing warehouse layouts based on ASP.
In: Franklin, M., Chun, S.A. (eds.) Proceedings of the Thirty-Sixth International
Florida Artificial Intelligence Research Society Conference, FLAIRS 2023, Clear-
water Beach, FL, USA, May 14-17, 2023. AAAI Press (2023)

31. Wang, K., Zhou, L., Lin, F.: Alternating fixpoint theory for logic programs with
priority. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.K., Palamidessi,
C., Pereira, L.M., Sagiv, Y., Stuckey, P. (eds.) Computational Logic - CL 2000,
First International Conference, London, UK, 24-28 July, 2000, Proceedings. LNCS,
vol. 1861, pp. 164–178. Springer (2000)

32. Wei, X., Yuan, S., Ye, Y.: Optimizing facility layout planning for reconfigurable
manufacturing system based on chaos genetic algorithm. Production & Manufac-
turing Research 7(1), 109–124 (2019)

33. Wilhelm, M., Thevapalan, A., Kern-Isberner, G.: Prioritizing answer sets based
on conditional expert knowledge. In: Franklin, M., Chun, S.A. (eds.) Proceedings
of the Thirty-Sixth International Florida Artificial Intelligence Research Society
Conference, FLAIRS 2023, Clearwater Beach, FL, USA, May 14-17, 2023. AAAI
Press (2023)

34. Wunderle, A., Sommer, T.: Erfahrung und augenmaß zählen. Hebezeuge Förder-
mittel (2014)

35. Zhang, Z.: Introspecting preferences in answer set programming. In: Palù, A.D.,
Tarau, P., Saeedloei, N., Fodor, P. (eds.) Technical Communications of the 34th
International Conference on Logic Programming, ICLP 2018, July 14-17, 2018,
Oxford, United Kingdom. OASIcs, vol. 64, pp. 3:1–3:13. Dagstuhl (2018)

