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Abstract. We examine the ASP encoding used for one-shot solving of
Multi-Agent Path Finding (MAPF) and adapt it for incremental solving
to avoid repeated grounding work.

1 Introduction

Multi-Agent Path Finding (MAPF)[9] is the problem of finding a path in a given
graph for multiple agents while avoiding collisions. Agents may traverse the
graph’s edges or wait at their current vertex. All agents have a starting location
and must arrive to their goal location. Agents may not occupy the same vertex at
the same time instant and may not traverse the same edge in a different direction
at the same time, called vertex and edge constraints, respectively.

A possible way to solve MAPF is via search techniques, such as conflict-based-
search[2]. Another way is via reduction-based techniques, such as propositional
satisfiability (SAT)[1] or answer set programming (ASP)[3], which is the focus of
this work.

ASP solvers find (optimal) solutions to MAPF with a series of one-shot calls
to the solver[8]. It first attempts to find a solution using the lower bound of the
horizon (maximum number of moves). If it fails, it increments the horizon and
tries again until a solution is found. Notice that regrounding after increasing the
horizon involves introducing few extra rules. In other words, a big portion of the
grounding time is spent on recomputing previously grounded rules.

Recently, MAPF encodings incorporate the notion of reachable vertices[10].
Given a horizon, a starting location, and a goal location, a vertex is reachable if
there is a path from the starting to the goal location, passing through the vertex,
of length at most the horizon. Current encodings make use of this information to
avoid grounding unnecesary atoms.

In the following section, we assume that the reader is familiar with ASP
syntanx and semantics as well as with the underlying solving mechanism. For
more information, we refer to [3] and [4].

2 Single-shot Encoding

We model agent movements using the encoding shown in Listing 1.1, originally
shown in [8]. Below, we provide an intuitive explanation of this encoding.
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An instance for this encoding includes facts over the predicates vertex/1 and
edge/2, which define the graph’s vertices and edges, respectively. Additionally,
the facts agent/1, start/2, and goal/2 describe the agents and their associated
start and goal vertices. The lower bounds on the number of moves of an agent,
and the vertices they can occupy at each time point, are specified by the facts
starting horizon/2 and reach/3.

Line 1 sets up the individual time points available to each agent. The choice
rule in Line 3 chooses a move for each agent for every time point. Note that it is
possible to not move, which is interpreted as a wait action. Line 4 assigns the
starting position of an agent to the initial time point. Line 5 moves an agent to
the position given by the chosen move. If no move is chosen, Line 6 ensures that
an agent stays in place. Line 8 ensures that the move starts at the correct vertex.
Line 9 makes sure that an agent has exactly one position per time point. Lines
11 and 12 encode vertex and edge collisions, respectively. Finally, Line 13 ensures
that all agents are at their goals at the last time point.

1 time(A,1..T+D) :- starting_horizon(A,T), delta(D).

3 {move(A,U,V,T ): edge(U,V), reach(A,V,T )} 1 :- reach(A,U,T -1).
4 at(A,V,0) :- start(A,V), agent(A).
5 at(A,V,T) :- move(A,_,V,T ).
6 at(A,V,T) :- at(A,V,T -1), not move(A,V,_,T), time(A,T), reach(A,V,T ).

8 :- move(A,U,_,T), not at(A,U,T -1).
9 :- {at(A,V,T )} != 1, time(A,T).

11 :- {at(A,V,T )} > 1, vertex(V), time(_,T).
12 :- move(_,U,V,T), move(_,V,U,T), U<V.
13 :- goal(A,V), not at(A,V,H+D), starting_horizon(A,H), delta(D).

Listing 1.1. ASP encoding for bounded MAPF.

The given encoding is sufficient to find makespan optimal solutions. However,
to find sum-of-cost optimal solutions, additional rules are required. The following
encoding assumes the existence of the fact delta/1, which specifies the maximum
number of extra moves an agent is allowed to make:

1 penalty(A,N) :- starting_horizon(A,N+1), N>=0.
2 penalty(A,T) :- starting_horizon(A,N), at(A,U,T), not goal(A,U), T>=N.
3 penalty(A,T) :- penalty(A,T+1), T>=0.

5 bound(H+D) :- H=#sum{T,A: starting_horizon(A,T)}, delta(D).
6 :- #sum{1,A,T: penalty(A,T)} > B, bound(B).

Listing 1.2. ASP encoding to enforce the sum-of-cost objective for bounded MAPF.

Line 2 applies a penalty to each timepoint below the shortest path. Line 3
applies the penalty if the agent is not at their goal. On Line 4, the penalty is
propagateed to all previous time points. Lines 6 and 7 make sure that the number
of extra actions is respected. The cost of the solution is the sum of the penalties.

3 Challenges in Incremental Modelling

Incremental or multi-shot solving handles evolving logic programs. After the
initial grounding, new rules can only be added if they are modular [6], meaning
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Fig. 1. Example instance with start positions s1 and s2, and goal positions g1 and g2,
respectively.

they introduce distinct atoms. Consider the instance in figure 1. Agent 1 starts
at vertex s1 and aims to reach g1, while Agent 2 starts at s2 and aims for g2.
The instance is described by the following facts:

1 agent (1;2). start(1,s1). start(2,s2). goal(1,g1). goal(2,g2).
2 starting_horizon (1,2). starting_horizon (2,1).
3 vertex(s1;g1;g2;g2;v1).
4 edge(s1,v1). edge(v1,g1). edge(s2,g2).
5 edge(s1,g2). edge(g2,g1).
6 reach(1 ,s1,0). reach(1,v1,1 ). reach (1 ,g1,2).
7 reach(2 ,s2,0). reach(2,g2,1 ).

A typical incremental version of the previous encoding would consider the
full graph for every agent from the beginning. For example, Agent 1 could reach
its goal at timepoint 2 from two different vertices. The ground instances of the
rule in Line 5 of the encoding in Listing 1.1 would look as follows:

1 at(1 ,g1,2) :- move(1 ,v1,g1,2 ).
2 at(1 ,g1,2) :- move(1 ,g2,g1,2 ).

After applying completion and converting to nogoods, we get the following:

1 {T_at(1,g1,2), F_move (1 ,v1,g1,2), F_move (1 ,g2,g1,2 )}
2 {F_at(1,g1,2), T_move (1 ,v1,g1,2 )}
3 {F_at(1,g1,2), T_move (1 ,g2,g1,2 )}

These nogoods state that it is not possible for Agent 1 to be at its goal location
at timepoint 2 unless the necessary moves have been performed. Additionally,
if Agent 1 moves to its goal, it must be there. However, the encoding described
earlier, by utilizing the reach/3 predicate, would only generate the following
rule:

1 at(1 ,g1,2) :- move(1 ,v1,g1,2 ).

with its corresponding nogoods:

1 {T_at(1,g1,2), F_move (1 ,v1,g1,2 )}
2 {F_at(1,g1,2), T_move (1 ,v1,g1,2 )}

It is easy to see that when vertex g2 becomes available to Agent 1, the nogoods
generated by the new rule would cause a conflict. If one of the moves is selected,
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one set of nogoods would propagate that the agent is at its goal, while another
would indicate that the agent cannot be at its goal. In fact, attempting this in
Clingo results in an error.

This issue arises when new rules are added to the program with an existing
atom in the head. In our context, it occurs when the grounder does not consider
all vertices in the graph for a given time point simultaneously. As a result, when
a new way to reach an existing position is introduced, it leads to the conflict
described earlier.

This pattern is seen in state-of-the-art MAPF techniques. For example, in [7],
they restrict the graph to a subset of vertices. If a solution cannot be found on
this sub-graph, additional vertices are included in the next grounding attempt.

For these reasons, a one-shot solving approach is typically used. However,
this results in most of the information being grounded multiple times. To address
this, we propose an encoding that enables incremental solving. This encoding
incorporates the techniques described in [5], along with new methods, to effectively
modularize the MAPF encoding.

4 Incremental encoding

In this section, we will examine the individual components of the single-shot
encoding and explain how we transform them for incremental solving.

We refer to the atoms and rules grounded in a given step as a layer. To
represent the positions an agent can occupy at a specific time point within a
layer, we introduce the predicate reach/4 (given as a fact before grounding
a layer), replacing the previous reach/3. The last argument in this predicate
corresponds to the layer number (denoted as k in the encoding). These predicates
are central to the incremental encoding, as they help determine which rules need
to be grounded.

Using the reach/4 predicate, we generate the predicate r edge/5, which
indicates the edges an agent can traverse at a given time point within a specific
layer. Again, the last argument is the layer number. The predicate reachk/3

accumulates all instances of reach/4 across all layers. Finally, the predicate
newtime/3 indicates that a new time point has been introduced in the given
layer.

We begin by examining the rule in Line 3 of Listing 1.1, which denotes the
choice of moves. The transformation is as follows:

1 { move(A,U,V,T) : r_edge(A,U,V,T,k )} 1 :- time(A,T).

This rule is almost identical to the one in the single-shot encoding, except that
it replaces the reach/3 predicates with the r edge/5 predicate. This ensures
that we only select moves that are available in the current layer. However, a
closer examination reveals that this transformation is not sufficient. The rule
only enforces that at most one move is chosen for the current layer. This means
that once additional moves become available in future layers, it would be possible
to select one move from each layer, potentially resulting in more than one move
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for the agent. To address this, we add the following rules to ensure that only one
move is chosen across all layers:

1 moved(A,T,k) :- move(A,U,V,T), r_edge(A,U,V,T,k ).
2 forward_move(A,T,k) :- moved(A,T,k).
3 forward_move(A,T,k) :- forward_move(A,T,k -1).
4 :- forward_move(A,T,k -1), moved(A,T,k).

In the first rule, the predicate moved/3 becomes true if a move is selected in the
current layer. In the second rule, we introduce the predicate forward move/3 to
propagate the fact that a move is chosen in the current layer to the next layer.
The third rule propagates the fact that a move was selected in a previous layer
to the current one. Finally, the last rule ensures that only one layer can have
a move selected at any given time. This construction is based on the approach
described in [5].

Now, we examine the rule in Line 9 of Listing 1.1, which ensures that an agent
has exactly one position per time point. Here, we employ a similar approach as
with the moves. An ”exactly one” condition can be viewed as an ”at-most-one”
and an ”at-least-one” aggregate working together. The transformation is as
follows:

1 :- { at(A,V,T) : reach(A,V,T,k) } > 1, time(A,T).
2 has_position(A,T,k) :- at(A,V,T), reach(A,V,T,k ).
3 forward_has_position(A,T,k) :- has_position(A,T,k).
4 forward_has_position(A,T,k) :- forward_has_position(A,T,k -1).
5 :- forward_has_position(A,T,k -1), has_position(A,T,k), time(A,T).

7 backward_has_position(A,T,k) :- has_position(A,T,k).
8 backward_has_position(A,T,k) :- backward_has_position(A,T,k +1).
9 #external backward_has_position(A,T,k +1): time(A,T). [false]

11 #external backward_has_position(A,T,k) : newtime(A,T,k). [false]
12 :- not backward_has_position(A,T,k), newtime(A,T,k ).

The first rule enforces the ”at-most-one” condition within the given layer.
The following four rules handle the propagation of this condition across layers,
similar to how we managed the moves.

The subsequent three rules begin encoding the ”at-least-one” part of the
constraint. In this case, the propagation works from the current layer down to
the first layer. The final two rules set up the base layer, ensuring that at least
one position is assigned to the agent in the initial layer. These rules are grounded
once, when a new timepoint is introduced.

Next, we transform the rules in Lines 5 and 6 of Listing 1.1 that move the
agent as follows:

1 #external move(A,U,V,T ):edge(U,V), not r_edge(A,U,V,T,k), reach(A,U,T -1,k).
2 #external move(A,U,V,T ):edge(U,V), not r_edge(A,U,V,T,k), reach(A,V,T,k ).
3 at(A,V,T) :- move(A,U,V,T), reach(A,V,T,k ).
4 at(A,V,T) :- at(A,V,T -1), not moved_from(A,V,T), time(A,T), reach(A,V,T,k ).
5 moved_from(A,U,T) :- move(A,U,V,T), reach(A,U,T -1,k).
6 :- moved_from(A,U,T), not at(A,U,T -1), reach(A,U,T -1,k).

This transformation leverages the fact that there are at most four possible
moves to and from a given location. The first two lines introduce external atoms
for moves that are not yet possible. In Lines 3 and 4, we use those moves, along
with the choices made in the move selection rule, to update the position of the
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agent. Essentially, this process pre-grounds all possible incoming and outgoing
moves for a given location. Since unavailable moves are defined as external atoms,
they default to false. The rules using the external atoms will not trigger unless the
move is made possible in the future and a corresponding choice rule is grounded
for it. This approach ensures that moves are only considered when they are valid,
respecting the incremental nature of the encoding. The rule in Line 5 projects
away the end point of the move. The atom is then used in Line 6 to ensure that
the agent stats the move at the correct location.

Next, we address the vertex constraint in Line 11 of Listing 1.1:

1 :- at(A,V,T), at(B,V,T), A != B, reach(A,V,T,k), reachk(B,V,T).

Here, we utilize the reachk predicate to determine which vertices are available
for a given agent in the current layer. This allows us to ground the constraint
only when an agent-vertex pair introduced in the current layer conflicts with
another agent. This ensures that the constraint is only grounded when a potential
collision between agents can actually occurs. A similar construct is used for the
edge constraint in Line 12 of Listing 1.1, ensuring that edge conflicts are also
handled efficiently by only grounding the constraint when agents can actually
collide on a specific edge.

Finally, we examine the rules that handle the penalties for sum-of-cost optimal
solutions. The transformation follows the method outlined in [5], with a few
modifications. Below is an intuitive explanation of how we transform these rules.
Line 2 of Listing 1.2 is transformed as follows:

1 penalty(A,0..N-1) :- starting_horizon(A,N).

Since these penalties are facts, we ground them once in the base program.
For line 3, we use the following transformation:

1 penalty(A,T) :- penalty(A,T,k), newtime(A,T,k), starting_horizon(A,N),
2 T<N+delta.
3 penalty(A,T,k) :- starting_horizon(A,N), T>=N, at(A,U,T), not goal(A,U),
4 reach(A,U,T,k ).
5 penalty(A,T,k) :- penalty(A,T,k +1).
6 #external penalty(A,T,k +1) : starting_horizon(A,N), time(A,T), T>=N.

8 penalty(A,N+delta) :- penalty(A,N+delta,k +1), starting_horizon(A,N),
9 newtime(A,_,k ).

First, we look at the second rule which is mostly a direct transformation from
the single-shot verion. The main difference is in the last argument that denotes
in which layer this rule is grounded. Again, by using the reach predicate, we only
ground the rule for the vertices introduced in the current layer. The first rule
describes that whenever this atom is true, the atom without the layer argument
is also true. Notice that this rule is also only grounded once, on the layer where
the time point is introduced. The third rule simply propagates the penalty from
future layers to the lowest layer, where it can then be used in the first rule.
In short, once an atom with a layer argument is true, it will propagate to the
previous layers until it reaches the first one. Then, it will propagate the atom
without the layer argument.

In the fourth rule, we introduce an external atom for the future layer atom so
that is it not simplified away while grounding. Finally, the last rule in the listing
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exists due to a peculiarity with the reach predicate. Since we rely on the fact the
agent can only be at the goal, at the last time point there will be no grounded
instances of the second rule. Hence, there will also be no rule instances for rule 1.
The last rule in the listing makes sure that a similar rule is grounded for the last
time point.

Finally, the rule in Line 4 of Listing 1.2 is transformed as follows:

1 #external penalty(A,N+delta +1) : starting_horizon(A,N), newtime(A,_,k ).
2 penalty(A,T) :- penalty(A,T+1), newtime(A,T,k), starting_horizon(A,N).

The first rule defines an external predicate for the penalty at a future time point,
ensuring that the penalty in the next rule is not simplified away. The second rule
propagates the penalty from one time step to the previous one, making sure to
only do this for new time points.

The goal constraint in Line 13 of Listing 1.1 and the constraint enforcing a
certain number of extra moves in Line 7 of Listing 1.2 are deleted and encoded
anew every grounding step.

5 Experiments

The rule transformation described in the previous section is but one way to
modularize the encoding. We consider the following encodings:

– Alt-0 is the encoding as described in section 4.

– Alt-1 encodes inertia by way of a choice rule and embeds the precondition of
the move in the choice rule.

– Alt-2 does not enforce the amount of moves an agent can have, relying on
the fact that an agent has exactly 1 position to stay consistent.

To compare the performance of the incremental and one-shot solvers, we run
benchmarks on the set of instances from [8]. They consists of instances with type
empty, room, maze, and random of sizes ranging from 16 × 16 to 128 × 128. All
maps start with 5 agents and the number of agents increases by 5 up to 100
agents.

We expect the incremental solver to perform worse on smaller instances and
better on larger ones. Smaller instances have low grounding times, so the increased
grounding efficiency is unlikely to offset the overhead of incremental solving.
However, for larger instances, the overhead of grounding the same information
multiple times is significant, and the incremental solver should outperform the
one-shot solver.

Preliminary results show that the Alt-0 and Alt-2 variants slightly improve
on the one-shot solver, solving 20 and 30 more instances, respectively. The Alt-
1 variant is the best overall, solving about 60 more instances. It also shows
improvement on smaller instances, unlike the other variants. Unexpectedly, for
all encodings, the incremental solver performs worse on the largest instances,
where grounding is expected to be most expensive.
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Size Instances One-shot Alt-0 Alt-1 Alt-2

16 (800) 263 263 280 265
32 (800) 331 341 353 340
64 (800) 412 428 436 431
128 (800) 352 346 351 352

Total (3200) 1358 1378 1420 1388

6 Conclusion

In this work, we outlined a method to transform a single-shot ASP encoding
into an incremental one. We ran experiments to compare their performance and
found that the incremental solver performs better than the one-shot solver on
smaller instances. For larger instances, the incremental solver is slightly worse
than the one-shot solver.

For future work, we will focus on improving the encoding to speed up grounding
time and explore ways to reduce the overhead of incrementally grounding the
problem. Additionally, we will run more experiments to confirm the results.
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