
Strong and Uniform Equivalence Revisited

Zeynep G. Saribatur, Stefan Woltran

Institute of Logic and Computation, TU Wien

Abstract. We introduce a new notion of equivalence for logic programs
that has strong and uniform equivalence as corner cases. We provide a
characterisation in the spirit of SE-models together with a complexity
analysis which sheds new light on the known di�erence between strong
and uniform equivalence.

1 Introduction

Strong equivalence [2] between logic programs P and Q asks whether, for each
further program R, the answer sets of P ∪ R and Q ∪ R coincide. We adapt
this notion in the sense that the program R can be seperated into several parts
over di�erent alphabets. From a practical perspective, this can be motivated
by a situation where P and Q receive input from di�erent sources (each with
their own alphabet) - the traditional notion of strong equivalence can be too
restrictive in such a setting. From a theoretical perspective, as we will see, this
allows to parameterize strong and uniform equivalence [1] (here R is restricted
to facts) as special cases.

2 Preliminaries

We consider a countable universe U of atoms. A signature is any set of alpha-
bets {A1, . . . , An} where

⋃
i Ai = U . We consider the class of �nite generalized

disjunctive programs (i.e., with possibly double negated body atoms), simply
referred as �programs", as well as the class of unary programs which allows only
for facts a ← and rules of the form a ← b. We say that a program P is given
over a signature Σ = {A1, . . . , An} if for each rule r ∈ P there exists an i such
that r has all its atoms from Ai. For an interpretation Y and alphabet A, we use
Y |A as shorthand for Y ∩ A. Answer sets of a program P (in symbols AS (P))
are de�ned via the GL-reduct as usual. We recall the notion of an SE-model
of a program P : (X,Y) ∈ SE (P), if X ⊆ Y ⊆ U , Y |= P , and X |= PY . An
SE-model (X,Y) of P is called UE-model of P if for each X ′ with X ⊂ X ′ ⊂ Y ,
(X ′, Y) /∈ SE (P). Strong (resp. uniform) equivalence between programs P and
Q holds exactly if SE (P) = SE (Q) (resp. UE (P) = UE (Q)) [2, 1].

3 Main Results

We de�ne our new notion of equivalence. Proofs of the forthcoming results and
some examples are provided in the appendix.

2 Zeynep G. Saribatur, Stefan Woltran

De�nition 1. Let P and Q be programs and Σ be a signature. We call P and
Q Σ-equivalent (P ≡Σ Q) if for each R over Σ, AS (P ∪R) = AS (Q∪R) holds.

It is easy to see that for the signature Σs = {U}, Σs-equivalence coincides
with strong equivalence. We will later observe that for Σu = {{a} | a ∈ U},
Σu-equivalence coincides with uniform equivalence.

We now provide the objects for our forthcoming main characterization result
(observe for signatures Σs and Σu the relation to SE- and UE-models).

De�nition 2. Let P be a program and Σ = {A1, ..., An} be a signature. An
SE-model (X,Y) of P is called Σ-model of P (in symbols (X,Y) ∈ SEΣ(P)) if,
in addition, for each X ′ such that X ′ |= PY and X ⊂ X ′ ⊂ Y , there exists an i
such that X|Ai

⊂ X ′|Ai
⊂ Y |Ai

.

Theorem 1. Given a signature Σ, and two programs P and Q, the following
propositions are equivalent: (i) P ≡Σ Q; (ii) for each unary program R over Σ,
AS (P ∪R) = AS (Q ∪R); (iii) SEΣ(P) = SEΣ(Q).

Note that thanks to propery (ii), it follows directly that Σu-equivalence
matches uniform equivalence, since unary rules of the form a ← a have no
semantical e�ect. We conclude with the following complexity result and recall
that, while strong equivalence is known to be coNP-complete, uniform equiva-
lence is ΠP

2 -complete (in the following result, we tacitly consider U to be �nite
and a superset of the atoms occurring in P and Q).

Theorem 2. Given programs P , Q, and signature Σ = {A1, . . . An} over uni-
verse U , deciding P ≡Σ Q is ΠP

2 -complete. If we bound the dimension n of Σ
to a �xed constant, the problem is coNP-complete.

4 Discussion

We analysed the known di�erences between strong and uniform equivalence in
terms of characterisation and computational complexity by providing a new
equivalence schema. Compared to the approach [3], where restricting alphabets
in heads and bodies of rules in the context program has been proposed, we did
so by partitioning the rules into di�erent alphabets via a given signature. Future
work will tackle the relativized case where the signature Σ = {A1, . . . , An} does
not cover the entire universe, i.e. where we can have

⋃
i Ai ⊂ U .

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) projects
T-1315 and 10.557766/COE12.

Strong and Uniform Equivalence Revisited 3

References

1. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model se-
mantics. In: International Conference on Logic Programming. pp. 224�238. Springer
(2003)

2. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526�541 (Oct 2001)

3. Woltran, S.: A common view on strong, uniform, and other notions
of equivalence in answer-set programming. Theory Pract. Log. Pro-
gram. 8(2), 217�234 (2008). https://doi.org/10.1017/S1471068407003250,
https://doi.org/10.1017/S1471068407003250

4 Zeynep G. Saribatur, Stefan Woltran

A Appendix

A.1 Examples

For the sake of our examples, we take a �nite universe U = {a, b, c, d}.
Consider signature Σ = {A1, A2} with A1 = {a, b} and A2 = {c, d}, and

programs P,Q with

SE (P) = {(∅, abcd), (ab, abcd), (abcd, abcd)}
SE (Q) = {((ab, abcd), (abcd, abcd)}

Hence, P and Q are not strongly equivalent. In order to construct an R such
that AS (P ∪ R) ̸= AS (Q ∪ R), we need a rule like c ← b which does not a�ect
SE-model (∅, abcd) of P but �kills� SE-model (ab, abcd). On the other hand,
there is no chance to exclude (ab, abcd) with rules over a, b (or c, d) only � i.e.
over Σ � without killing the total model (abcd, abcd) or removing (∅, abcd) at
the same time. Indeed, P and Q are Σ-equivalent as can be checked via our
characterisation. The SE-model (∅, abcd) is not Σ-model of P since {a, b}A1

=
{a, b, c, d}|A1

and ∅|A2
= {a, b}|A2

; thus the necessary condition for (∅, abcd)
being Σ-model of P does neither hold for A1 nor for A2.

This shows that {{a, b}, {c, d}}-equivalence is indeed a di�erent concept than
{{a, b, c, d}}-equivalence (i.e., strong equivalence).

One might ask whether {{a, b}, {c, d}}-equivalence amounts to checking for
relative strong equivalence with respect to {a, b} and relativized strong equiva-
lence wrt {c, d} separately. Without going too much into detail, let us see another
example. We use Σ as before and programs P , Q with the following SE-models.

SE (P) = {(∅, abcd), (a, abcd), (c, abcd), (abcd, abcd)}
SE (Q) = {((a, abcd), (c, abcd), (abcd, abcd)}

It can be checked that AS (P ∪R) ̸= AS (Q ∪R) for R = {b← a, d← c} � note
that R satis�es the restriction for being a context program over Σ. In fact, it
can be checked that (∅, abcd) remains Σ-model of P , thus the Σ-models of P
and Q do not coincide, as expected. However, P and Q are strongly equivalent
relative to both {a, b} and {c, d}. This can be seen by using relativized SE-
models. Here it appears that (c, abcd) becomes (∅, abcd) for alphabet {a, b}, and
(a, abcd) becomes (∅, abcd) for alphabet {c, d}. Hence, for both alphabets, the
relativized SE-models of P and Q coincide.

A.2 Proof of Theorem 1

We start with a technical lemma.

Lemma 1. Given program P , signature Σ, and X ⊂ Y . If (X,Y) ∈ SE (P),
there exists X ′ with X ⊆ X ′ ⊂ Y such that (X ′, Y) ∈ SEΣ(P).

Strong and Uniform Equivalence Revisited 5

Proof. If (X,Y) ∈ SEΣ(P) we are done, so suppose this is not the case. Oth-
erwise, by de�nition, there exists some X ′ with X ⊂ X ′ ⊂ Y and X ′ |= PY .
Hence (X ′, Y) ∈ SE (P). It is clear that a subset-maximal such X ′ also satis�es
the condition for (X ′, Y) ∈ SEΣ(P).

We now proceed with the proof of the statement, i.e. given a signature Σ,
and two programs P and Q, the following propositions are equivalent:

(i) P ≡Σ Q;
(ii) for each unary program R over Σ, AS (P ∪R) = AS (Q ∪R);
(iii) SEΣ(P) = SEΣ(Q).

(i)⇒(ii) follows directly.

(ii)⇒(iii): We prove by contraposition. Suppose SEΣ(P) ̸= SEΣ(Q). W.l.o.g.
assume (X,Y) ∈ SEΣ(P) \ SEΣ(Q).

Case 1: X = Y : Then Y ∈ AS (P ∪ Y) but Y /∈ AS (Q ∪ Y). Note that the
set of facts Y ful�ls the necessary condition for being a unary program over Σ.

Case 2: X ⊂ Y . Let us separate the following subcases:
Case 2.1: there is a X ′ with X ⊂ X ′ ⊂ Y and (X ′, Y) ∈ SE (Q) such that for

all i, either X|Ai = X ′|Ai or X
′|Ai = Y |Ai . For this case let

R = X ′ ∪
⋃
i

{a← b | a, b ∈ (Y \X) ∩Ai}.

We have Y ∈ AS (P ∪ R) but Y /∈ AS (Q ∪ R). Y /∈ AS (Q ∪ R) is clear since
X ′ |= QY and X ′ |= R = RY . In order to show Y ∈ AS (P ∪ R), suppose
the contrary. Then, there must exist Z with X ⊆ Z ⊂ Y such that Z |= PY

and Z |= RY = R. From the latter we derive that X ⊂ Z (since X ′ ⊆ R and
X ⊂ X ′). However, since (X,Y) ∈ SEΣ(P), we know that for each such Z there
exists an i such that X|Ai

⊂ Z|Ai
⊂ Y |Ai

. But then Z cannot be model of the
subprogram {a← b | a, b ∈ (Y \X) ∩Ai}.

Case 2.2: otherwise, due to (X,Y) /∈ SEΣ(Q), (X,Y) /∈ SE (Q). For this case
let

R = X ∪
⋃
i

{a← b | a, b ∈ (Y \X) ∩Ai}.

We have Y ∈ AS (Q ∪ R) but Y /∈ AS (P ∪ R). The latter is easily veri�ed. To
see the former, let X ′ with X ⊂ X ′ ⊂ Y . If (X ′, Y) ∈ SE(Q), then there exists
an i with X|Ai

⊂ X ′|Ai
and X ′|Ai

⊂ Y |Ai
(otherwise we would be in Case 2.1).

But then, X ′ ̸|= {a← b | a, b ∈ (Y \X) ∩Ai} which is part of R.

Observe that in both cases R full�ls the necessary condition for being a unary
program over Σ.

(iii)⇒(i): Let R be a context program over Σ, such that there is an Y with Y ∈
AS (P ∪R) and Y /∈ AS (Q∪R) (the other case symmetric). For Y /∈ AS (Q∪R)
we identify two cases:

6 Zeynep G. Saribatur, Stefan Woltran

Case 1: Y ̸|= Q ∪ R. Since Y |= P ∪ R we have (Y, Y) ∈ SEΣ(P) and
Y ̸|= Q. From the latter (Y, Y) /∈ SEΣ(Q). Thus assume in what follows that
total Σ-models of P and Q coincide.

Case 2: There is an X ⊂ Y such that X |= (Q ∪R)Y = QY ∪RY . It follows
that X ̸|= PY , and thus (X,Y) /∈ SEΣ(P). In case (X,Y) ∈ SEΣ(Q) we are
done, so assume this is not the case. Since X |= QY , there exists X ⊂ X ′ ⊂ Y
with X ′ |= QY such that for all i, either X|Ai

= X ′|Ai
or X ′|Ai

= Y |Ai
. Observe

that X ′ |= RY (this can be seen as follows: if X ′ ̸|= RY there is a rule r ∈ R
with X ′ ̸|= rY , i.e. H(r) ∩ X ′ = ∅; since r is over some alphabet Ai, we know
that thus either H(r)∩X = ∅ or H(r)∩Y = ∅; both a contradiction to previous
assumptions). Thus X ′ ̸|= PY , and thus (X ′, Y) /∈ SEΣ(P). We can reiterate
this argument now. By Lemma 1, at some point we arrive in a situation where
(X,Y) /∈ SEΣ(P) but (X,Y) ∈ SEΣ(Q).

A.3 Proof of Theorem 2

The lower bounds follow from known complexity results for strong and respec-
tively uniform equivalence. For the upper bounds we make use of the character-
sation of Theorem 1 and the result below. The bounds then follow by deciding
the complementary problem via guessing a pair (X,Y) and checking whether
(X,Y) ∈ SEΣ(P) and (X,Y) /∈ SEΣ(Q) holds, or (X,Y) /∈ SEΣ(P) and
(X,Y) ∈ SEΣ(Q) holds.

Lemma 2. Given P , (X,Y) and Σ = {A1, ..., An} a signature over U . Deciding
(X,Y) ∈ SEΣ(P) is (a) in coNP in general; (b) in P if n is bounded to constant.

Proof. (a) The complementary problem is in NP � checking (X,Y) /∈ SE (P)
can be done e�ciently; for the additional condition it su�ces to guess X ′ with
X ′ |= PY and X ⊂ X ′ ⊂ Y , and then loop over all i and check whether
X|Ai

= X ′|Ai
or X ′|Ai

= Y |Ai
(note that the number of iterations is polynomial

in input).
(b) We provide an algorithm for checking (X,Y) /∈ SEΣ(P). We �rst check

for potential violation of (X,Y) ∈ SE (P) which is in P. Then we loop over all
non-empty subsets I of the powerset of {1, . . . , n} and for each such i we consider
X ′

I = X∪
⋃

i∈I(Y ∩Ai). We then check whether inX ′
I |= PY andX ⊂ X ′

I ⊂ Y . If
we �nd such an X ′ we know (X,Y) /∈ SEΣ(P). Since n is constant, the number
of possible I is also constant. Moreover, all possible X ⊂ X ′ ⊂ Y , such that
X|Ai = X ′|Ai or X

′|Ai = Y |Ai for all i are covered by some X ′
I .

