Strong and Uniform Equivalence Revisited

Zeynep G. Saribatur, Stefan Woltran

Institute of Logic and Computation, TU Wien

Abstract. We introduce a new notion of equivalence for logic programs
that has strong and uniform equivalence as corner cases. We provide a
characterisation in the spirit of SE-models together with a complexity
analysis which sheds new light on the known difference between strong
and uniform equivalence.

1 Introduction

Strong equivalence [2] between logic programs P and @ asks whether, for each
further program R, the answer sets of P U R and @ U R coincide. We adapt
this notion in the sense that the program R can be seperated into several parts
over different alphabets. From a practical perspective, this can be motivated
by a situation where P and @ receive input from different sources (each with
their own alphabet) - the traditional notion of strong equivalence can be too
restrictive in such a setting. From a theoretical perspective, as we will see, this
allows to parameterize strong and uniform equivalence [1] (here R is restricted
to facts) as special cases.

2 Preliminaries

We consider a countable universe U of atoms. A signature is any set of alpha-
bets {A1,...,An} where | J; A; = U. We consider the class of finite generalized
disjunctive programs (i.e., with possibly double negated body atoms), simply
referred as “programs”, as well as the class of unary programs which allows only
for facts a < and rules of the form a < b. We say that a program P is given
over a signature X' = {A;,..., A, } if for each rule r € P there exists an ¢ such
that r has all its atoms from A;. For an interpretation Y and alphabet A, we use
Y|4 as shorthand for Y N A. Answer sets of a program P (in symbols AS(P))
are defined via the GL-reduct as usual. We recall the notion of an SE-model
of a program P: (X,Y) € SE(P),if X CY CU,Y = P,and X = PY. An
SE-model (X,Y) of P is called UE-model of P if for each X’ with X C X’ C Y,
(X',Y) ¢ SE(P). Strong (resp. uniform) equivalence between programs P and
@ holds exactly if SE(P) = SE(Q) (resp. UE(P) = UE(Q)) [2,1].

3 Main Results

We define our new notion of equivalence. Proofs of the forthcoming results and
some examples are provided in the appendix.

2 Zeynep G. Saribatur, Stefan Woltran

Definition 1. Let P and Q be programs and X be a signature. We call P and
Q X-equivalent (P =5 Q) if for each R over ¥, AS(PUR) = AS(QUR) holds.

It is easy to see that for the signature Xy = {U}, Xs-equivalence coincides
with strong equivalence. We will later observe that for X, = {{a} | a € U},
X.~equivalence coincides with uniform equivalence.

We now provide the objects for our forthcoming main characterization result
(observe for signatures Xy and X, the relation to SE- and UE-models).

Definition 2. Let P be a program and X = {A;,...,A,} be a signature. An
SE-model (X,Y) of P is called X-model of P (in symbols (X,Y) € SEx(P)) if,
in addition, for each X' such that X' = PY and X C X' C Y, there exists an i
such that X|a, C X'|a, CY|a4,.

Theorem 1. Given a signature X, and two programs P and Q, the following
propositions are equivalent: (i) P =5 Q; (i1) for each unary program R over X,
AS(PUR) = AS(QU R); (iii) SEx(P) = SEx(Q).

Note that thanks to propery (ii), it follows directly that X,-equivalence
matches uniform equivalence, since unary rules of the form a < a have no
semantical effect. We conclude with the following complexity result and recall
that, while strong equivalence is known to be coNP-complete, uniform equiva-
lence is ITF-complete (in the following result, we tacitly consider U to be finite
and a superset of the atoms occurring in P and Q).

Theorem 2. Given programs P, Q, and signature ¥ = {A1,... A,} over uni-
verse U, deciding P =x Q is I1¥ -complete. If we bound the dimension n of X
to a fized constant, the problem is coNP-complete.

4 Discussion

We analysed the known differences between strong and uniform equivalence in
terms of characterisation and computational complexity by providing a new
equivalence schema. Compared to the approach [3], where restricting alphabets
in heads and bodies of rules in the context program has been proposed, we did
so by partitioning the rules into different alphabets via a given signature. Future
work will tackle the relativized case where the signature ¥ = {44,..., A, } does
not cover the entire universe, i.e. where we can have | J; A4; C U.

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) projects
T-1315 and 10.557766/COE12.

Strong and Uniform Equivalence Revisited 3

References

1. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model se-
mantics. In: International Conference on Logic Programming. pp. 224-238. Springer
(2003)

2. Lifschitz, V., Pearce, D.; Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526-541 (Oct 2001)

3. Woltran, S.: A common view on strong, uniform, and other notions
of equivalence in answer-set programming. Theory Pract. Log. Pro-
gram. 8(2), 217-234 (2008). https://doi.org/10.1017/S1471068407003250,
https://doi.org/10.1017/S1471068407003250

4 Zeynep G. Saribatur, Stefan Woltran
A Appendix

A.1 Examples

For the sake of our examples, we take a finite universe Y = {a, b, ¢, d}.
Consider signature X = {A;, Ao} with A; = {a,b} and Ay = {c,d}, and
programs P, Q) with

(P) = {(0, abcd), (ab, abed), (abed, abed) }

SE(P) ={

SE(Q) = {((ab, abcd), (abed, abed)}

Hence, P and @ are not strongly equivalent. In order to construct an R such
that AS(PUR) # AS(QU R), we need a rule like ¢ + b which does not affect
SE-model (0, abed) of P but “kills” SE-model (ab,abcd). On the other hand,
there is no chance to exclude (ab, abcd) with rules over a,b (or ¢, d) only — i.e.
over X — without killing the total model (abed, abed) or removing (0, abed) at
the same time. Indeed, P and () are Y-equivalent as can be checked via our
characterisation. The SE-model ({}, abed) is not X-model of P since {a,b}4, =
{a,b,c,d}|a, and 0|4, = {a,b}|a,; thus the necessary condition for (0, abcd)
being X'-model of P does neither hold for A; nor for As.

This shows that {{a, b}, {c, d} }-equivalence is indeed a different concept than
{{a, b, ¢, d}}-equivalence (i.e., strong equivalence).

One might ask whether {{a,b}, {c, d}}-equivalence amounts to checking for
relative strong equivalence with respect to {a,b} and relativized strong equiva-
lence wrt {c, d} separately. Without going too much into detail, let us see another
example. We use X' as before and programs P, () with the following SE-models.

SE(P) = {(0, abed), (a, abed), (¢, abed), (abed, abed) }
SE(Q) = {((a, abed), (¢, abed), (abed, abed) }

It can be checked that AS(PUR) # AS(Q UR) for R = {b + a,d < ¢} — note
that R satisfies the restriction for being a context program over X. In fact, it
can be checked that (0, abed) remains X-model of P, thus the Y-models of P
and @ do not coincide, as expected. However, P and @ are strongly equivalent
relative to both {a,b} and {c,d}. This can be seen by using relativized SE-
models. Here it appears that (¢, abed) becomes (), abed) for alphabet {a, b}, and
(a, abed) becomes ((, abed) for alphabet {c,d}. Hence, for both alphabets, the
relativized SE-models of P and @ coincide.

A.2 Proof of Theorem 1
We start with a technical lemma.

Lemma 1. Given program P, signature X, and X C Y. If (X,Y) € SE(P),
there exists X' with X C X' CY such that (X',Y) € SEx(P).

Strong and Uniform Equivalence Revisited 5

Proof. If (X,Y) € SEx(P) we are done, so suppose this is not the case. Oth-
erwise, by definition, there exists some X’ with X ¢ X' C Y and X' = PY.
Hence (X', Y) € SE(P). It is clear that a subset-maximal such X" also satisfies
the condition for (X',Y) € SEx(P).

We now proceed with the proof of the statement, i.e. given a signature X,
and two programs P and @, the following propositions are equivalent:

(i) P=xQ;
(ii) for each unary program R over X, AS(PUR) = AS(Q U R);
(ili) SEx(P) = SEx(Q).

(i)=(ii) follows directly.

(ii)=-(iii): We prove by contraposition. Suppose SEx(P) # SEx(Q). W.lLo.g.
assume (X,Y) € SEx(P)\ SEx(Q).

Case 1: X =Y: Then Y € AS(PUY) but Y ¢ AS(Q UY). Note that the
set of facts Y fulfils the necessary condition for being a unary program over 3.

Case 2: X C Y. Let us separate the following subcases:

Case 2.1: thereis a X’ with X € X’ C Y and (X',Y) € SE(Q) such that for
all 4, either X |4, = X'|4, or X'|a, = Y|a4,. For this case let

R=X"U|J{a«blabe (Y \X)NA}.

We have Y € AS(PUR) but Y ¢ AS(QUR). Y ¢ AS(Q U R) is clear since
X' E QY and X' = R = RY. In order to show Y € AS(P U R), suppose
the contrary. Then, there must exist Z with X C Z C Y such that Z = PY
and Z = RY = R. From the latter we derive that X C Z (since X’ C R and
X C X'). However, since (X,Y) € SEx(P), we know that for each such Z there
exists an 4 such that X|4, C Z]a, C Y|4,. But then Z cannot be model of the
subprogram {a < b|a,be (Y \ X)NA;}.

Case 2.2: otherwise, due to (X,Y) ¢ SEx(Q), (X,Y) ¢ SE(Q). For this case
let

R=XU|J{a+blabe (Y \X)NA}

We have Y € AS(QU R) but Y ¢ AS(P U R). The latter is easily verified. To
see the former, let X’ with X C X' C Y. If (X',Y) € SE(Q), then there exists
an ¢ with X|4, C X'|a, and X'|4, C Y|4, (otherwise we would be in Case 2.1).
But then, X' = {a < b|a,be (Y \ X)N A;} which is part of R.

Observe that in both cases R fullfils the necessary condition for being a unary
program over 3.

(iii)=-(i): Let R be a context program over X, such that there is an Y with Y €
AS(PUR) and Y ¢ AS(QUR) (the other case symmetric). For Y ¢ AS(QUR)
we identify two cases:

6 Zeynep G. Saribatur, Stefan Woltran

Case 1: Y £ QUR. Since Y E PUR we have (YY) € SEx(P) and
Y £ Q. From the latter (Y,Y) ¢ SEx(Q). Thus assume in what follows that
total X-models of P and @ coincide.

Case 2: There is an X C Y such that X E (QU R)Y = QY URY. It follows
that X = PY, and thus (X,Y) ¢ SEs(P). In case (X,Y) € SEx(Q) we are
done, so assume this is not the case. Since X = QY, there exists X C X' C YV
with X’ = QY such that for all 4, either X |4, = X'|4, or X'|4, = Y|4,. Observe
that X’ |= RY (this can be seen as follows: if X’ = RY there is a rule r € R
with X’ £ rY ie. H(r) N X' = ; since r is over some alphabet A;, we know
that thus either H(r)NX =0 or H(r)NY = (; both a contradiction to previous
assumptions). Thus X’ = PY, and thus (X',Y) ¢ SEx(P). We can reiterate
this argument now. By Lemma 1, at some point we arrive in a situation where
(X,Y) ¢ SEx(P) but (X,Y) € SEx(Q).

A.3 Proof of Theorem 2

The lower bounds follow from known complexity results for strong and respec-
tively uniform equivalence. For the upper bounds we make use of the character-
sation of Theorem 1 and the result below. The bounds then follow by deciding
the complementary problem via guessing a pair (X,Y) and checking whether
(X,Y) € SEx(P) and (X,Y) ¢ SEx(Q) holds, or (X,Y) ¢ SEx(P) and
(X,Y) € SEx(Q) holds.

Lemma 2. Given P, (X,Y) and ¥ = {A4, ..., A,} a signature over U. Deciding
(X,Y) € SEx(P) is (a) in coNP in general; (b) in P if n is bounded to constant.

Proof. (a) The complementary problem is in NP — checking (X,Y’) ¢ SE(P)
can be done efficiently; for the additional condition it suffices to guess X’ with
X" = PY and X C X' C Y, and then loop over all i and check whether
X|a, = X'|a, or X'|a, = Y|4, (note that the number of iterations is polynomial
in input).

(b) We provide an algorithm for checking (X,Y’) ¢ SEx(P). We first check
for potential violation of (X,Y) € SE(P) which is in P. Then we loop over all
non-empty subsets I of the powerset of {1,...,n} and for each such ¢ we consider
X} = XUU,;¢;(YNA;). We then check whether in X} = PY and X € X} C V. If
we find such an X’ we know (X,Y) ¢ SE 5 (P). Since n is constant, the number
of possible I is also constant. Moreover, all possible X C X’ C Y, such that
X|a, = X'|a, or X'|a, =Y|a, for all ¢ are covered by some X}.

