
Progress on an ASP-based
Interactive Configurator

Lucia Balážová1, Richard Comploi-Taupe1 ,
Susana Hahn2 , and Nicolas Rühling2

1 Siemens AG Österreich, Vienna, Austria
{balazova.lucia,richard.taupe}@siemens.com

2 University of Potsdam, Germany, and Potassco Solutions
{hahnmartinlu,nruehling}@uni-potsdam.de

1 Introduction

Configuration [8] has been one of the first successful applications [7, 10, 12] of
Answer Set Programming (ASP; [11, 13]). Nonetheless, there remain many open
challenges for ASP-based product configurators, one of them being interactive
configuration.

Industrial configuration problems in large infrastructure projects may contain
thousands of components and hundreds of component types and are typically
solved in a step-wise manner by combining interactive actions with automatic
solving of sub-problems [5]. When using a grounding-based formalism like ASP,
the so-called grounding bottleneck [4] arises due to the large number of com-
ponents. Furthermore, the necessary domain size is not known beforehand and
can vary significantly. Therefore, we require a way to dynamically introduce new
components during the configuration process.

In our previous work we developed an API to satisfy basic requirements for
interactive configuration [5] based on OOASP [6] and using various features of
clingo3 [9]. In this extended abstract, we report on our recent advancements in
developing an ASP-based domain-independent interactive configuration platform.
The new achievements, compared to previously published reports [2, 3], consist
of dramatically improved solving performance by using novel so-called smart
expansion techniques and the creation of a UI prototype based on clinguin [1].

2 Novel Contributions

We have aimed to accomplish the interactive tasks outlined in [2], focusing on
improving the performance of extending a partial configuration (P) to a complete
one (C) (T8 [2]). We have achieved this by enhancing the classical incremental
approach for multi-shot solving with four different smart expansion functions.
The idea is that before checking for the existence of C with the current objects,
we calculate cautious and brave consequences (intersection and union of stable

3 https://potassco.org/clingo/

https://orcid.org/0000-0001-7639-1616
https://orcid.org/0000-0003-2622-2632
https://orcid.org/0000-0001-5157-6788
https://potassco.org/clingo/

2 L. Balážová et al.

models, respectively) and subsequently apply the smart expansion functions
which determine and add necessary specific objects or associations to P until
no more information can be extracted. This approach limits the number of
costly unsatisfiability checks and reduces the search space by adding type-specific
objects and associations.

All smart expansion functions exploit knowledge about UML class diagrams,
a common way to represent object-oriented (configuration) problems [8]. Due
to space constraints, we explain here only one and refer to the source code for
further details.4 As in [2], we use the racks example depicted in Appendix A.

The first function, assoc needs object, identifies the need to add objects of
a specific type and associate them to an existing object. Consider the partial
configuration formed by a rack r and a frame f with no associations. A rack
needs to be associated to at least four frames, which means that even if r gets
associated to f , it needs at least three more frames in the configuration to be
associated to. This information is present in the cautious consequences with three
target atoms indicating that at least X ∈ {1, 2, 3} objects of type frame are
needed. The smart function evaluates this information by taking the maximum
of X and subsequently grounds three more frames which are associated to object
r via association rack_frames. We use multiple atoms under the notion of “at
least” and leverage the intersection of models to discard target atoms from
models where possible associations with existing objects were not considered.
For instance, the model where r and f are not associated yields target atoms
for X ∈ {1, 2, 3, 4}, but when intersected with the target atoms of the model
including the association, X = 4 is discarded.

Two of the other smart functions, namely, global ub gap and global lb gap,
make use of cautious consequences as well but do not refer to specific objects.
Instead they calculate gaps between upper (respectively, lower) bounds for each
object type and the actual number of existing objects, thus, adding global objects
without any specific associations.

Finally, the function association possible reduces the search space by establish-
ing viable associations for completing the configuration using brave consequences.
This can have effects on the completeness of solutions by limiting options, however
it speeds up the process of finding/estimating the minimal domain size.

In addition, by using clinguin for the UI, many interactive tasks (T1-3, T5,
and T7 [2]) were directly integrated into the ASP UI encoding. The final prototype
enhances usability with features such as saving/loading configurations and a
clear button, while utilizing clinguin’s integration with clingraph to visualize and
interact with the configuration graph. A snapshot of the UI is shown in Figure 3
in Appendix C.

Our experimental results depicted in Figure 2 in Appendix B show that
the smart functions significantly increase performance overall. A drawback of
smart functions is that they do not perform well with additional domain-specific
constraints that cannot be expressed solely by associations. How to improve this
situation will be investigated in future work.

4 https://github.com/siemens/OOASP

https://github.com/siemens/OOASP

Progress on an ASP-based Interactive Configurator 3

Acknowledgements

This research has been partially supported by the Austrian Research Promotion
Agency (FFG) as part of the “AI for Green” programme.

References

1. Beiser, A., Hahn, S., Schaub, T.: ASP-driven user-interaction with clinguin. In:
Cabalar, P., Swift, T. (eds.) Technical Communications of the Fortieth International
Conference on Logic Programming (ICLP’24). EPTCS (2024)

2. Comploi-Taupe, R., Falkner, A., Hahn, S., Schaub, T., Schenner, G.: Interactive con-
figuration with ASP multi-shot solving. In: Horcas, J., Galindo, J., Comploi-Taupe,
R., Fuentes, L. (eds.) Proceedings of the Twenty-fifth International Configuration
Workshop (CONF’23). vol. 3509, pp. 95–103. CEUR Workshop Proceedings (2023),
https://ceur-ws.org/Vol-3509/paper13.pdf

3. Comploi-Taupe, R., Hahn, S., Schenner, G., Schaub, T.: Challenges of developing
an API for interactive configuration using ASP. In: Tarzariol, A., Laferrière, F.,
Saribatur, Z. (eds.) Proceedings of the Fifth Workshop on Trends and Applications
of Answer Set Programming (TAASP’22) (2022), http://www.kr.tuwien.ac.at/
events/taasp22/papers/TAASP_2022_paper_5.pdf

4. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set
programming with bounded predicate arities and implications. Ann. Math. Artif.
Intell. 51(2-4), 123–165 (2007). https://doi.org/10.1007/s10472-008-9086-5

5. Falkner, A., Haselböck, A., Krames, G., Schenner, G., Schreiner, H., Taupe, R.:
Solver requirements for interactive configuration. Journal of Universal Computer
Science 26(3), 343–373 (2020). https://doi.org/10.3897/jucs.2020.019

6. Falkner, A., Ryabokon, A., Schenner, G., Shchekotykhin, K.: OOASP: connecting
object-oriented and logic programming. In: Calimeri, F., Ianni, G., Truszczyński,
M. (eds.) Proceedings of the Thirteenth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’15). Lecture Notes in Artificial
Intelligence, vol. 9345, pp. 332–345. Springer-Verlag (2015). https://doi.org/10.
1007/978-3-319-23264-5_28

7. Felfernig, A., Falkner, A., Atas, M., Erdeniz, S., Uran, C., Azzoni, P.: ASP-based
knowledge representations for IoT configuration scenarios. In: Zhang, L., Haag,
A. (eds.) Proceedings of the Nineteenth International Configuration Workshop
(CONF’17). pp. 62–67 (2017)

8. Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (eds.): Knowledge-Based Config-
uration: From Research to Business Cases. Elsevier/Morgan Kaufmann (2014).
https://doi.org/10.1016/C2011-0-69705-4

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming 19(1), 27–82 (2019).
https://doi.org/10.1017/S1471068418000054

10. Gebser, M., Kaminski, R., Schaub, T.: aspcud: A Linux package configuration tool
based on answer set programming. In: Drescher, C., Lynce, I., Treinen, R. (eds.)
Proceedings of the Second International Workshop on Logics for Component Con-
figuration (LoCoCo’11). Electronic Proceedings in Theoretical Computer Science
(EPTCS), vol. 65, pp. 12–25 (2011). https://doi.org/10.4204/eptcs.65.2

11. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press (2014)

https://ceur-ws.org/Vol-3509/paper13.pdf
http://www.kr.tuwien.ac.at/events/taasp22/papers/TAASP_2022_paper_5.pdf
http://www.kr.tuwien.ac.at/events/taasp22/papers/TAASP_2022_paper_5.pdf
https://doi.org/10.1007/s10472-008-9086-5
https://doi.org/10.1007/s10472-008-9086-5
https://doi.org/10.3897/jucs.2020.019
https://doi.org/10.3897/jucs.2020.019
https://doi.org/10.1007/978-3-319-23264-5_28
https://doi.org/10.1007/978-3-319-23264-5_28
https://doi.org/10.1007/978-3-319-23264-5_28
https://doi.org/10.1007/978-3-319-23264-5_28
https://doi.org/10.1016/C2011-0-69705-4
https://doi.org/10.1016/C2011-0-69705-4
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.4204/eptcs.65.2
https://doi.org/10.4204/eptcs.65.2

4 L. Balážová et al.

12. Gençay, E., Schüller, P., Erdem, E.: Applications of non-monotonic reasoning
to automotive product configuration using answer set programming. Journal
of Intelligent Manufacturing 30, 1407–1422 (2019). https://doi.org/10.1007/
s10845-017-1333-3

13. Lifschitz, V.: Answer Set Programming. Springer-Verlag (2019). https://doi.org/
10.1007/978-3-030-24658-7

A The Racks Example

Figure 1 shows a UML class diagram for the racks knowledge base generated by
clingraph. The “hardware racks” domain is a typical example of an industrial
configuration problem [6]. The problem consists of instantiating various hardware
components and associating them to each other while satisfying several constraints:
Elements are controlled by modules of different types, which are placed in frames,
which are located in racks.

Fig. 1. UML class diagram for the racks knowledge base generated by clingraph.

B Experimental Results

As visualized in Figure 2, the smart expansion functions provide a significant
improvement in terms of performance. This decrease in runtime makes the system
capable of completing much more complex partial configurations than the previous
version [2]. However, smart functions underperformed in cases where additional
domain-specific constraints were imposed (by this we mean constraints that
cannot be expressed solely by associations, such as that a Frame that contains a
ModuleII additionally requires a ModuleV).

Combinations and order of the smart functions can be tailored to a particular
problem (not shown in the figure). On average, combinations of all smart functions
starting with association possible provide the best results. In our benchmarking
the combination association possible, assoc needs object, global ub gap, global lb -
gap was used.

https://doi.org/10.1007/s10845-017-1333-3
https://doi.org/10.1007/s10845-017-1333-3
https://doi.org/10.1007/s10845-017-1333-3
https://doi.org/10.1007/s10845-017-1333-3
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7

Progress on an ASP-based Interactive Configurator 5

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

size of initial partial configuration

0

100

200

300

400

500

600

ti
m
e
(s
ec
on
ds
)

implementation version

new (without additional constraints)

new (with additional constraints)

old

Fig. 2. Runtime comparison (time-out: 600s).

C UI Prototype

Figure 3 shows a screenshot of our clinguin-based UI prototype. This interface
provides multiple improvements in terms of usability compared to the previous
version [2], such as the ability to both save and load existing complete and partial
configurations in the form of sets of facts. Furthermore, the user can resolve
some constraint violations instantly by pressing the violation warnings in the
bottom left panel. The objects are visualized dynamically upon addition and can
be selected by directly clicking on them. The visualization also highlights the
associated objects to help the user find connected objects in larger configurations
and uses different colors of text to emphasize the type of information they convey.

6 L. Balážová et al.

Fig. 3. Example of usage of the clinguin GUI for the Interactive Configurator.

	Progress on an ASP-basedInteractive Configurator

