
Translating monotone aggregates from Ferraris
into Gelfond-Zhang semantics: Work in progress

Pedro Cabalar1, Jorge Fandinno2, Javier Romero3, Nicolas Rühling3, Torsten
Schaub3, and Philipp Wanko3

1 University of A Coruña, Spain
2 University of Nebraska at Omaha, NE, USA

3 University of Potsdam, Germany

1 Introduction

The Logic of Here-and-There with constraints (HTc, [4, 2, 3]) extends the formal
foundations of Answer Set Programming (ASP) with a framework for constraint
values and variables which allows to assign default values to constraint variables
or to leave them undefined. Recent work incorporated so-called conditional
constraints [3], thereby providing a semantics for (conditional) aggregates with
constraint variables. Two alternative semantics are studied that are respectively
based on the principle of Gelfond-Zhang (GZ; [6]) and Ferraris (F; [5]) semantics
for aggregates without constraint variables. Its results have subsequently been
applied in the implementation of fclingo4, a hybrid solver for ASP modulo
conditional linear constraints with founded variables. However, unlike clingo
which uses an aggregate semantics based on the F-semantics, the results from
[3] currently only make it possible to use GZ-aggregates in fclingo. While the
F-semantics guarantees definedness of aggregates, the GZ-semantics is based
on the Vicious Circle Principle and therefore prohibits derivations where the
body of a rule depends on some object in its head. Consider for example the rule
a← count{a} ≥ 0. While under the F-semantics (and thus in clingo) this gives
us one stable model {a}, the GZ-semantics prohibits a derivation and we get no
stable models. We would like to achieve the same well known aggregate behavior
from clingo in fclingo.

For this, we envision a two-step translation where first any non-convex aggre-
gates are translated into monotone ones by using results from [1]. Then, monotone
aggregates under the F-semantics are translated into a set of rules under the
GZ-semantics such that stable models are preserved under projection to the
original variables. This abstract conjectures a theorem for the second part of the
translation.

2 Translating monotone aggregates

Due to lack of space, we provide only a few essential definitions from HTc needed
for further reading and refer the reader to [3] for more details. A conditional

4 https://github.com/potassco/fclingo, a full system description is planned for the
future

2 P. Cabalar et al.

term is of form (τ |τ ′:φ) with τ and τ ′ terms and φ a formula representing the
condition. All three of τ , τ ′ and φ are assumed to be condition-free, ie. they do
not contain any conditional terms themselves. Intuitively, the conditional term
evaluates to τ when the condition holds and τ ′ otherwise. However, there are
differences in the evaluation depending on the chosen semantics which can be
based either on the vicious circle (vc) or definedness principle (df), corresponding
to the GZ- and F-semantics, respectively. More precisely, for both semantics we
have that for ⟨h, t⟩ |=κ φ the conditional term evaluates to τ and for ⟨t, t⟩ ̸|=κ φ,
the conditional term evaluates to τ ′. A different behavior arises for the case where
⟨t, t⟩ |=κ φ but ⟨h, t⟩ ̸|=κ φ (the condition is assumed to be true but cannot be
proven). Then, under df the conditional term evaluates to τ ′ while under vc it
evaluates to undefined.

We assume that there exists a selection function κ which assigns to each
conditional term either vc or df and we denote the set of κ-stable models of
a theory Γ by SM κ(Γ). Further, we define the set of variables of a theory Γ
by vars(Γ) and the set of κ-stable models projected onto a set of variables
as SM κ(Γ)|X = {t|X | t ∈ SM κ(Γ)}. For now, aggregates have the form of
(conditional) linear constraints (or constraint atoms for short) which are a
comparison of the form α ◦ β such that ◦ ∈ {≤, <,=, ̸=} and α and β are sums
of (possibly conditional) terms.

For the conjecture, we are working with a syntactic definition of monotone
constraint atoms. We write c[s/s′] to represent the syntactic replacement in c of
subexpression s by s′.

Definition 1 (Statically monotone linear constraint). Let c be a constraint
atom, s = (τ |τ ′:φ) a conditional term occurring in c and κ be a selection function.

We say that s is statically κ-monotone wrt c if every h ⊆ h′ ⊆ t satisfy that
⟨h, t⟩ |=κ c[s/τ ′] implies ⟨h′, t⟩ |=κ c[s/τ]. We say that c is statically κ-monotone
if all conditional terms occurring in it are statically κ-monotone wrt c.

Example 1. Consider the constraint atom (1|0:x = t) + (1|0: y = t) ≥ 1. The first
term (1|0:x = t) is statically df -monotone wrt the constraint as for any ht-
interpretation ⟨h, t⟩ which satisfies 0 + (1|0: y = t) ≥ 1 it follows that any ⟨h′, t⟩
such that h ⊂ h′ ⊆ t satisfies 1 + (1|0: y = t) ≥ 1. By the same arguments, the
second term and therefore the whole constraint atom is statically df -monotone.

We define the following translation for logic programs

Definition 2 (Translation). For a logic program Γ , we translate every rule r
as follows

1. ¬¬r
2. pi ∨ ¬pi ← φi for every conditional term si = (τi|τ ′i :φi) in r
3. r′

where the pi are fresh, propositional atoms for each φi and r′ is the result of
replacing each si = (τi|τ ′i :φi) in r by s′i = (τi|τ ′i : pi). We denote the result of the
translation by Φ(Γ) .

Translating monotones aggregates from F- into GZ-semantics 3

We conjecture the following theorem which would allow us to use the behavior
of F-aggregates inside the GZ-semantics of fclingo for monotone aggregates

Conjecture 1. Let Γ be a logic program with statically df -monotone constraint
atoms in the body. Then,

SM df (Γ) = SM vc(Φ(Γ))|vars(Γ)

Next, we illustrate the translation and the conjecture with a small example.

Example 2. Consider the following program

Γ =

{
x = t.

y = t← (1|0:x = t) + (1|0: y = t) ≥ 1

As shown before, the constraint atom (1|0:x = t) + (1|0: y = t) ≥ 1 is statically
df -monotone. The program has a single df -stable model {x 7→ t, y 7→ t}, but no
vc-stable model as there is a smaller ht-model ⟨{x 7→ t}, {x 7→ t, y 7→ t}⟩ which
satisfies the second rule under the vc-semantics by making the constraint atom
undefined (The second term (1|0: y = t) evaluates to undefined which makes the
whole constraint atom undefined). Translating Γ gives

Φ(Γ) =



x = t.

⊥ ← (1|0:x = t) + (1|0: y = t) ≥ 1,¬(y = t).

px ∨ ¬px ← x = t.

py ∨ ¬py ← y = t.

y = t← (1|0: px = t) + (1|0: py = t) ≥ 1.

where px and py are fresh, propositional constants.
The translation now has vc-stable model {x 7→ t, y 7→ t, px 7→ t} which

when projected to the original variables of Γ gives the original df -stable model
{x 7→ t, y 7→ t}.

References

1. Alviano, M., Faber, W., Gebser, M.: From non-convex aggregates to monotone
aggregates in ASP. In: Kambhampati [7], pp. 4100–4104

2. Cabalar, P., Fandinno, J., Schaub, T., Wanko, P.: An ASP semantics for constraints
involving conditional aggregates. In: De Giacomo, G., Catalá, A., Dilkina, B., Milano,
M., Barro, S., Bugaŕın, A., Lang, J. (eds.) Proceedings of the Twenty-fourth European
Conference on Artificial Intelligence (ECAI’20). pp. 664–671. IOS Press (2020)

3. Cabalar, P., Fandinno, J., Schaub, T., Wanko, P.: A uniform treatment of aggregates
and constraints in hybrid ASP. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.)
Proceedings of the Seventeenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’21). pp. 193–202. AAAI Press (2020)

4. Cabalar, P., Kaminski, R., Ostrowski, M., Schaub, T.: An ASP semantics
for default reasoning with constraints. In: Kambhampati [7], pp. 1015–1021.
https://doi.org/10.5555/3060621.3060762

4 P. Cabalar et al.

5. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM
Transactions on Computational Logic 12(4), 25:1–25:40 (2011)

6. Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with aggregates.
Theory and Practice of Logic Programming 14(4-5), 587–601 (2014)

7. Kambhampati, R. (ed.): Proceedings of the Twenty-fifth International Joint Confer-
ence on Artificial Intelligence (IJCAI’16). IJCAI/AAAI Press (2016)

This article was processed using the comments style on November 21, 2024.
There remain 0 comments to be processed.

