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Abstract. A current challenge in nerusoymbolic computation is to find
benchmark tools that can easily produce data based on logical formulas.
We address this by creating a constraint-based visual dataset genera-
tor. We use Answer Set Programming to define grid-like structures that
contain geometric objects in the cells. By defining a constraint and its
converse, we produce models that are then visually represented and can
be readily used to train a neural network for binary classification or
object detection and recognition.

Keywords: Neurosymbolic · Answer Set Programming · Computer Vi-
sion.

1 Introduction

Neurosymbolic computation [2] aims to bridge the gap between neural networks
and logical reasoning systems. A key challenge in this field is the development
of efficient tools that can generate data derived from logical formulas, which
are crucial for testing neurosymbolic systems [5]. In response to this need, we
present a novel constraint-based visual dataset generator. Using Answer Set
Programming (ASP), we define structures containing objects where constraints
govern the placement of the latter. By manipulating these constraints, we can
generate datasets that either satisfy or violate specific conditions, enabling their
use to benchmark neurosymbolic systems.

2 Constraint-Based Image Generator

We consider grid like structures that contain symbols. The symbols in the grids
must respect certain logical rules. These can produce a variety of known puzzles
such as sudoku or latin squares when the symbols are numbers. We use geometric
objects for our dataset with attributes form, color and size.

{obj(X,Y,F,C,S) : form(F), color(C), size(S)} = 1 :- width(X), heigth(Y).
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Consider now a possible constraint such that no two adjacent objects have
the same form:

:- obj(X, Y, S, _, _), obj(X1, Y, S, _, _), X1=X+1.
:- obj(X, Y, S, _, _), obj(X, Y1, S, _, _), Y1=Y+1.

Its easy to introduce the converse of this constraint:

adj_same_shape :- obj(X, Y, S, _, _), obj(X1, Y, S, _, _), X1=X+1.
adj_same_shape :- obj(X, Y, S, _, _), obj(X, Y1, S, _, _), Y1=Y+1.
:- not adj_same_shape.

In this way we can create models that comply or break a constraint. We
identify three types of constraints that are interesting for this puzzles, namely,
spatial, equality and counting constraints.

Fig. 1: Different stages of the generation of the images.

We then visualize the models by creating images of them. To increase the
challenge for neural networks, we use the following:

1. Move the objects randomly inside their grids.
2. Use Stable Diffusion [1] to add backgrounds based on Jackson Pollock .
3. Use Stable Diffusion on the original image along a mask with the objects to

generate small perturbations in the objects.

The output of our system are the images and labels for the objects, their
bounding boxes, and whether the image that contains them complies or break
the constraint.

We generated 1000 images that follow the example constraint and a 1000
that break it. We split the dataset into 1600 images for training and 400 for
validation. The data was tested on YOLOv8n [4], where in 100 epochs it reaches
an accuracy plateu of ∼80%.

3 Conclusion and Future Work

We successfully developed a challenging constraint-based visual dataset genera-
tor based on Answer Set Programming.

For future work, we aim to produce a baseline using YOLOv8 by modifying
its loss function to include a term which verifies if the objects detected comply
with the constraint or not [3].
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