
Bypassing the ASP Bottleneck:
Hybrid Grounding by Splitting and Rewriting

Alexander Beiser1, Markus Hecher2, Kaan Unalan1, and Stefan Woltran1

1 TU Wien, Vienna, Austria <firstname>.<lastname>@tuwien.ac.at
2 Massachusetts Institute of Technology, MA, United States hecher@mit.edu

1 Introduction
Efficient Answer Set Programming (ASP) [13, 14, 17, 12] systems [4, 9] led to the suc-
cess of ASP. Their grounding [16], instantiation of variables by their domain, strategy
leads to the grounding bottleneck [11, 18]. It prohibits the grounding of large practical
instances. This is no surprise, as it is well known that the evaluation of a non-ground
normal ASP program is NEXPTIME-complete [6]. But, by bounding the maximum
predicate arity, this can be reduced to ΣP

2 completeness [8]. Many approaches to cir-
cumvent this problem have been proposed, such as program compilation [5, 7], lazy-
grounding [11, 19], ASP-modulo theory [9, 15], or body-decoupled grounding (BDG) [2].
However, no single approach works well in all tasks.

In this extended abstract, we present Hybrid Grounding, a short version of our pa-
per presented at IJCAI24 [1]. Hybrid Grounding combines the best of the worlds of
traditional grounding and BDG, by enabling the free (manual) splitting of an ASP pro-
gram into a part grounded by traditional, and a part where grounding is accomplished
by rewriting rules along the ideas of BDG.

2 Background
Traditional grounding approaches use bottom-up grounding combined with semi-naive
grounding [10]. In contrast, BDG leverages complexity theoretical results of ASP. BDG
is the reduction for the answer set existence problems of (tight) normal programs with
bounded predicate arities, to disjunctive ground programs, which are both ΣP

2 com-
plete [8]3. This reduction procedure consists of the following steps: (i) Guess the answer
set candidates, (ii) ensure satisfiability, and (iii) prevent unfoundedness.

BDG obtains its practicality by decoupling dependencies between different predi-
cates in rule bodies. Therefore, BDG provides an efficient alternative to cope with large
and dense rule bodies, as body elements are grounded independently. Given a (tight
normal) program Π , a maximum arity of a, and a domain (ground terms) of dom(Π),
the grounding size is in O

(
|Π| · dom(Π)2·a

)
(Theorem 2 of [2]).

However, BDG faces several shortcomings. One is its limited interoperability, when
programs Π1 and Π2 shall be grounded via BDG and traditional grounding, respec-
tively. So far, BDG is only applicable when the head predicates of both programs are
disjoint. Further, it only supports a very limited subset of the ASP syntax that is sup-
ported by e.g., Clingo.

3 Note that this reduction can be extended to non-tight normal programs. Also a reduction exists
for disjunctive ASP programs to epistemic programs (ΣP

3 complete) [3].

2 A. Beiser et al.

3 Hybrid Grounding
We address the shortcomings of BDG by proposing Hybrid Grounding, which enables
the free (manual) splitting between parts of a program Π into Π1 (grounded along the
ideas of BDG), and Π2 (grounded by traditional approaches).

At a high level, the splitting is enabled by the usage of auxiliary atoms4 in Π1. Fur-
ther, suitable communication between Π1 and Π2 is implemented to guarantee semantic
equivalence. Additionally, correct treatment of cycles in the positive dependency graph
spanning Π1 and Π2 (thereby being shared cycles) is ensured. The following example
(taken from [1]) shall illustrate the deficiencies of BDG and sketch the functioning and
potential of Hybrid Grounding.

Example 1 Consider the non-ground program Π := {ra; rb}. Let G be a graph encoded
by edge predicates (e), given as an instance F := {b(1);c(2)} ∪ G. Now we define the
rules ra and rb: ra = a(X) ← b(X), rb = a(X) ← c(X), e(A,B), e(A,C), e(B,C).
Rule rb is dense in the sense that it has 3 interacting variables (A,B,C). To avoid ground-
ings which are cubic in the domain size, one would like to use BDG to ground rb.
However, as ra is not dense, one would like to use standard approaches to ground ra.

The problem is, as mentioned, that BDG is so far not able to do this. This comes, as
(i) rule ra justifies a(1). But (ii) BDG checks whether rb justifies a(1) as well. As rb
does not justify a(1), but a(1) must be part of the answer set due to ra, the BDG part
would wrongly conclude that a(1) is unfounded. Therefore, there would erroneously be
no resulting answer set.

Hybrid Grounding circumvents this problem by introducing auxiliary predicates,
thereby disentangling the parts grounded by standard and by BDG techniques. In our
example, this boils down to the introduction of a′ for rule rb. So, (i) ra derives a(1)
as before. But conceptually, Hybrid Grounding does, in contrast to above, not check
whether a(1) is founded by rb. It checks whether a′(1) is founded by rb. As (ii) a′(1)
is not founded by rb (and a′(1) is not required to hold), a′(1) is not derived in the first
place. Therefore, the result is then correct.

We realized Hybrid Grounding in our prototype NaGG5. Additionally, we extended
the input language of Hybrid Grounding to aggregates, and demonstrated its practicality
by conducting experiments.

4 Conclusion
We present Hybrid Grounding, the combination of standard grounding with rewritings
based on the ideas of body-decoupled grounding, which we presented at IJCAI24 [1].
Furthermore, it extends the input language of BDG, and finally, we showed its practical
significance by conducting a series of experiments. In future work, we want to investi-
gate the potential of automatic splitting and improve the performance of the non-tight
reduction.

4 The details of the hybrid grounding reduction are in the appendix, for both tight and non-tight
versions. Auxiliary atomes are indicated by a p′.

5 Supplementary material including source code, benchmark instances and experimental results,
are available online: https://github.com/alexl4123/newground/releases/
tag/v2.0.0.

Bypassing the ASP Bottleneck: Hybrid Grounding via Splitting and Rewriting 3

Acknowledgements

Research was funded by Vienna Science and Technology Fund (WWTF) grant ICT19-
065 and Austrian Science Fund (FWF) grants J 4656 and 10.557766/COE12.

References

1. Beiser, A., Hecher, M., Unalan, K., Woltran, S.: Bypassing the ASP Bottleneck:
Hybrid Grounding by Splitting and Rewriting. IJCAI24 pp. 3250–3258 (2024).
https://doi.org/10.24963/ijcai.2024/360, https://www.ijcai.org/proceedings/
2024/360, iSBN: 978-1-956792-04-1

2. Besin, V., Hecher, M., Woltran, S.: Body-Decoupled Grounding via Solving:
A Novel Approach on the ASP Bottleneck. IJCAI22 pp. 2546–2552 (2022).
https://doi.org/10.24963/ijcai.2022/353, https://www.ijcai.org/proceedings/
2022/353, iSBN: 978-1-956792-00-3

3. Besin, V., Hecher, M., Woltran, S.: On the Structural Complexity of Grounding – Tack-
ling the ASP Grounding Bottleneck via Epistemic Programs and Treewidth. ECAI23 372,
247–254 (2023). https://doi.org/10.3233/FAIA230277, https://ebooks.iospress.
nl/doi/10.3233/FAIA230277, iSBN: 978-1-64368-436-9 978-1-64368-437-6

4. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: The new intelligent grounder of DLV.
IA 11(1), 5–20 (2017). https://doi.org/10.3233/IA-170104, https://www.medra.org/
servlet/aliasResolver?alias=iospress&doi=10.3233/IA-170104

5. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Overcoming the Grounding Bottle-
neck Due to Constraints in ASP Solving: Constraints Become Propagators. IJCAI20
pp. 1688–1694 (2020). https://doi.org/10.24963/ijcai.2020/234, https://www.ijcai.
org/proceedings/2020/234, iSBN: 978-0-9992411-6-5

6. Dantsin, E., Eiter, T., Gottlob, G.: Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3), 374–425 (2001). https://doi.org/10.1145/502807.502810

7. Dodaro, C., Mazzotta, G., Ricca, F.: Compilation of Tight ASP Programs. ECAI23 372,
557–564 (2023). https://doi.org/10.3233/FAIA230316, https://ebooks.iospress.
nl/doi/10.3233/FAIA230316, iSBN: 978-1-64368-436-9 978-1-64368-437-6

8. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set programming
with bounded predicate arities and implications. Ann. Math. Artif. Intell. 51(2-4), 123–165
(2007). https://doi.org/10.1007/s10472-008-9086-5, http://link.springer.com/
10.1007/s10472-008-9086-5

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko,
P.: Theory Solving Made Easy with Clingo 5. ICLP16 52, 1–15 (2016).
https://doi.org/10.4230/OASICS.ICLP.2016.2, https://drops.dagstuhl.de/
entities/document/10.4230/OASIcs.ICLP.2016.2, artwork Size: 15 pages,
632693 bytes ISBN: 9783959770071 Medium: application/pdf Publisher: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik

10. Gebser, M., Kaminski, R., Schaub, T.: Grounding Recursive Aggregates: Preliminary Report.
GTTV15 (2012), http://arxiv.org/abs/1603.03884

11. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation Tech-
niques and Systems for Answer Set Programming: a Survey. IJCAI18 pp. 5450–5456 (2018).
https://doi.org/10.24963/ijcai.2018/769, https://www.ijcai.org/proceedings/
2018/769, iSBN: 978-0-9992411-2-7

4 A. Beiser et al.

12. Gelfond, M., Leone, N.: Logic programming and knowledge representation—The A-Prolog
perspective. Artif. Intell. 138(1-2), 3–38 (Jun 2002). https://doi.org/10.1016/S0004-
3702(02)00207-2, https://linkinghub.elsevier.com/retrieve/pii/
S0004370202002072

13. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. JICSLP88
pp. 1070–1080 (1988), https://www.cs.utexas.edu/~ai-lab/?gel88, editors:
Kowalski, Robert and Bowen and Kenneth

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Gener Comput 9(3-4), 365–385 (1991). https://doi.org/10.1007/BF03037169, http:
//link.springer.com/10.1007/BF03037169

15. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to Build Your Own
ASP-based System?! Theory Pract. Log. Program. 23(1), 299–361 (2023).
https://doi.org/10.1017/S1471068421000508, https://www.cambridge.org/
core/product/identifier/S1471068421000508/type/journal_
article

16. Kaminski, R., Schaub, T.: On the Foundations of Grounding in Answer Set Program-
ming. TPLP23 23(6), 1138–1197 (2023). https://doi.org/10.1017/S1471068422000308,
https://www.cambridge.org/core/product/identifier/
S1471068422000308/type/journal_article

17. Pearce, D.: A new logical characterisation of stable models and answer sets. NMELP96
1216, 57–70 (1996). https://doi.org/10.1007/BFb0023801, iSBN : 978-3-540-68702-3

18. Tsamoura, E., Gutierrez-Basulto, V., Kimmig, A.: Beyond the Grounding Bottleneck:
Datalog Techniques for Inference in Probabilistic Logic Programs. AAAI20 34(06),
10284–10291 (2020). https://doi.org/10.1609/aaai.v34i06.6591, https://ojs.aaai.
org/index.php/AAAI/article/view/6591

19. Weinzierl, A.: Blending Lazy-Grounding and CDNL Search for Answer-Set Solving.
In: Balduccini, M., Janhunen, T. (eds.) Logic Programming and Nonmonotonic Rea-
soning, vol. 10377, pp. 191–204. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5_17, http://link.springer.com/10.
1007/978-3-319-61660-5_17, series Title: Lecture Notes in Computer Science

Bypassing the ASP Bottleneck: Hybrid Grounding via Splitting and Rewriting 5

Appendix

In the Appendix, we provide the reader with selected details of our paper [1]. First we
discuss the details of the hybrid grounding procedures for tight (Figure 1), and then for
non-tight programs (Figure 2). In the IJCAI paper [1], the equivalent Figures can be
found as Figure 1 (main paper), and Figure 7 (supplementary material).

(Tight) Hybrid Grounding Procedure

First, we discuss a simplified variant of hybrid grounding, where we only permit cyclic
dependencies within Π2, but not between Π1 and Π2. Crucially, we ensure that atoms
are correctly derived, despite shared predicates between Π1 and Π2, thereby bijectively
preserving all answer sets.

Figure 1 depicts hybrid grounding procedureH. First, by Rules (1) we guess whether
an atom can be derived by means of Π1. Further, Rules (2) ensure that atoms over aux-
iliary predicates p′ (i.e., those derived by means of Π1) are copied to atoms over p.
This is crucial, as these rules ensure the link between Π1 and Π2, but also contribute
to rule satisfiability of Π1, as discussed below. Then, Rules (3) ground Π2 by classical
means (i.e., rule instantiation). Note that in this step, practical grounders might simplify
or remove rules of Π2. However, this can be avoided by grounding Π2 together with
(non-ground versions of) Rules (1) and (2).

Then, Rules (4)–(10) ensure rule satisfiability of Π1. This is achieved by guessing
every potential instantiation in Rules (4), applying the saturation technique in Rules (9),
and deriving rule satisfiability via avoiding rule body combinations due to Rules (6)–
(8). Observe that the latter rules only use a single (body) predicate of Π1. After that,
rule satisfiability can be derived for all rules of Π1 by Rules (5), which is mandatory
due to (10).

Finally, Rules (11)–(14) of Figure 1 ensure that, in addition to the satisfiability of
rules in Π1, every atom that is guessed via Rules (1) is indeed founded. To this end, it is
sufficient to find a suitable rule instantiation via Rules (11) for such an atom, and derive
unfoundedness for a rule, again, by decoupling body atoms due to Rules (12) and (13),
such that not every rule yields unfoundedness for that atom, see Rules (14). Note that
the latter rules are relaxed such that these rules are only generated for atoms that are
derived due to Π1, i.e., if the atom over the auxiliary predicate p′ holds.

Despite Rules (1), we bijectively preserve all answer sets.

6 A. Beiser et al.

Glue Π2 to Π1 and Ground Π2

h
′
(D) ∨ h′(D)← for every h(X) ∈ hpred(Π1),

D ∈ dom(X) (1)
h(D)← h

′
(D) for every h(X) ∈ hpred(Π1),

D ∈ dom(X) (2)
r for every r∈G(Π2) (3)
Satisfiability of Π1∨
d∈dom(x)

satx(d)← for every r ∈ Π1, x ∈ var(r),
where Π1 = {r1, . . . , rn} (4)

sat← satr1 , . . . , satrn for every r ∈ Π1, x ∈ var(r),

where Π1 = {r1, . . . , rn} (5)

satr ← satx1 (D⟨x1⟩), . . . , satxℓ
(D⟨xℓ⟩),¬p(D) for every r ∈ Π1, p(X) ∈ B

+
r ,

D ∈ dom(X),X = ⟨x1, . . . , xℓ⟩ (6)
satr ← satx1

(D⟨x1⟩), . . . , satxℓ
(D⟨xℓ⟩), p(D) for every r ∈ Π1, p(X) ∈ B

−
r ,

D ∈ dom(X),X=⟨x1, . . . , xℓ⟩ (7)

satr ← satx1 (D⟨x1⟩), . . . , satxℓ
(D⟨xℓ⟩), h

′
(D) for every r ∈ Π1, h(X) ∈ Hr,

D ∈ dom(X),X=⟨x1, . . . , xℓ⟩ (8)
satx(d)← sat for every r ∈ Π1, x ∈ var(r),

d ∈ dom(x) (9)
← ¬sat (10)

Prevent Unfoundedness of Atoms in Π1∨
d∈dom(y)

ufy(⟨D, d⟩)← h
′
(D) for every r ∈ Π1, h(X) ∈ Hr,

D ∈ dom(X), y ∈ var(r), y /∈ X (11)

ufr(DX)←ufy1(D⟨X,y1⟩),. . ., ufyℓ(D⟨X,yℓ⟩),¬p(DY) for every r∈Π1, h(X)∈Hr,
p(Y)∈B

+
r ,D∈ dom(⟨X,Y⟩),

Y=⟨y1,. . ., yℓ⟩ (12)

ufr(DX)←ufy1 (D⟨X,y1⟩),. . ., ufyℓ (D⟨X,yℓ⟩), p(DY) for every r∈Π1, h(X)∈Hr,
p(Y)∈B

−
r ∪ (Hr\{h(X)}),

D∈ dom(⟨X,Y⟩),Y=⟨y1,. . ., yℓ⟩ (13)

← ufr1 (D),. . ., ufrm (D), h
′
(D) for every h(X) ∈ hpred(Π1),

D ∈ dom(X),
{r1, . . . , rm}={r∈Π1 |h(X)∈Hr} (14)

Fig. 1: Hybrid grounding procedure H(Π2, Π1), which creates a disjunctive ground
program from a given non-ground (HCF) program Π1 ∪Π2 such that Π1 is tight. We
thereby interleave classical grounding on Π2 with body-decoupled grounding on Π1.

Bypassing the ASP Bottleneck: Hybrid Grounding via Splitting and Rewriting 7

(Non-tight) Hybrid Grounding Procedure

Figure 2 depicts the extended hybrid grounding procedure Hlv , which is similar to H
of Figure 1, but adds level mappings to deal with shared cycles between Π2 and Π1.
More precisely, Rules (15), (16) and (17) replace Rules (3), where non-ground rules
contained in Π2, i.e., those that shall be grounded via traditional grounding, are adapted
to consider the level mapping. Further, by adding Rules (18), (19), (20) and (21), we
ensure total level mappings, transitivity, and foundedness, respectively. Additionally,
Rules (22), (23), (25), and (26) (and thereby replacing Rules (1), (2) and (14)) we ensure
local foundedness for each rule in Π1 s.t. it is known which hr founds which h, which
is necessary for level mappings. Lastly, we replace Rule (8) with Rule (24), so a rule
is satisfied when h is in the answer set. This is important as it ensures that a rule is not
“forced to found” some hr, when it cannot do that due to ordering constraints.

8 A. Beiser et al.

R
eplacing

R
ules(3)for

(Shared)SC
C

sby:
G
({
r
′}
)

forevery
r
′∈

Π
2 ,

w
ith
∀
S
∈
scc(Π

)
:
(|E

(S
Π

1)|
=

0
or|E

(S
{
r
′})|

=
0
)

(15)
a
←

a
l+

1 ,...,a
m
,¬

a
m

+
1 ,...,¬

a
n
,(a

l+
1 ≺

a
),...,(a

m
≺
a
)

forevery
r
′∈

Π
2 ,

w
ith
∃
S
∈
scc(Π

)
:
(|E

(S
Π

1)|≥
1

and
|E

(S
{
r
′})|≥

1
),r∈

G
({
r
′}
),H

r =
{
a}

,
B

+r
=
{
a
l+

1 ,...,a
m
}
,a
∪
B

−r
=
{
a
,a

m
+
1 ,...,a

n }
(16)

←
a
l+

1 ,...,a
m
,¬

a
m

+
1 ,...,¬

a
n
,¬

a
forevery

r
′∈

Π
2 ,

w
ith
∃
S
∈
scc(Π

)
:
(|E

(S
Π

1)|≥
1

and
|E

(S
{
r
′})|≥

1
),r∈

G
({
r
′}
),H

r =
{
a}

,
B

+r
=
{
a
l+

1 ,...,a
m
}
,a
∪
B

−r
=
{
a
,a

m
+
1 ,...,a

n }
(17)

A
dditionalR

ulesfor
Foundednessof(Shared)SC

C
s:

[p
1 (D

1)
≺

p
2 (D

2)]∨
[p

2 (D
2)
≺

p
1 (D

1)]←
forevery

SC
C
S
∈
scc(Π

)
w

ith
|E

(S
Π

1)|≥
1
,p

1 (X
1),p

2 (X
2)
∈
S
,

D
1
∈
d
o
m
(X

1),D
2
∈
d
o
m
(X

2),p
1 (D

1)
̸=

p
2 (D

2)
(18)

←
[p

1 (D
1)
≺

p
2 (D

2)],[p
2 (D

2)
≺

p
3 (D

3)],[p
3 (D

3)
≺

p
1 (D

1)]
forevery

SC
C
S
∈
scc(Π

)
w

ith
|E

(S
Π

1)|≥
1
,p

1 (X
1),p

2 (X
2),

p
3 (X

3)
∈
S
,D

1
∈
d
o
m
(X

1),D
2
∈
d
o
m
(X

2),D
3
∈
d
o
m
(X

3),
p
1 (D

1)
̸=

p
2 (D

2),p
2 (D

2)
̸=

p
3 (D

3),p
1 (D

1)
̸=

p
3 (D

3)
(19)

ufr (D
X
)←

ufy
1 (D

⟨
X

,y
1 ⟩),...,ufy

ℓ (D
⟨
X

,y
ℓ ⟩),¬

[p
(D

Y
)
≺

h
r (D

X
)]

forevery
SC

C
S
∈
scc(Π

)
w

ith
|E

(S
Π

1)|≥
1
,h

(X
)∈

S
,

p
(Y

)∈
B

+r
,D
∈

d
o
m
(⟨X

,Y
⟩),Y

=
⟨y

1 ,...,y
ℓ ⟩,p

(D
Y
)
̸∈
F

(20)

ufr
r (D

X
)←
¬
[h

r (D
Y
)
≺

h
(D

X
)]

forevery
SC

C
S
∈
scc(Π

)
w

ith
|E

(S
Π

1)|≥
1
,h

(X
)∈

S
,

p
(Y

)∈
B

+r
,D
∈

d
o
m
(⟨X

,Y
⟩),Y

=
⟨y

1 ,...,y
ℓ ⟩,p

(D
Y
)
̸∈
F

(21)

R
eplace

R
ules(1)and

(2)w
ith:

h
r (D

)∨
h
r (D

)
←

forevery
r
∈
Π

1 ,h
(X

)
∈
h
p
red

(r),D
∈
d
o
m
(X

)
(22)

h
(D

)
←

h
r (D

)
forevery

r
∈
Π

1 ,h
(X

)
∈
h
p
red

(r),D
∈
d
o
m
(X

)
(23)

R
eplace

R
ules(8)w

ith:
satr
←

satx
1 (D

⟨
x
1 ⟩),...,satx

ℓ (D
⟨
x
ℓ ⟩),h

(D
)

forevery
r
∈
Π

1 ,h
(X

)
∈
H

r ,D
∈
d
o
m
(X

),X
=
⟨x

1 ,...,x
ℓ ⟩

(24)
R

eplace
R

ules(14)w
ith:

←
ufr (D

),h
r (D

)
forevery

h
(X

)
∈
h
p
red

(Π
1),D

∈
d
o
m
(X

),{
r
1 ,...,r

m
}
=
{
r∈

Π
1 |h

(X
)∈

H
r }

(25)

←
ufr

r
(D

),h
r (D

)
forevery

h
(X

)
∈
h
p
red

(Π
1),D

∈
d
o
m
(X

),{
r
1 ,...,r

m
}
=
{
r∈

Π
1 |h

(X
)∈

H
r }

(26)

Fig.2:
W

e
extend

the
hybrid

grounding
procedure

H
of

Figure
1

to
the

hybrid
grounding

procedure
for

shared
cycles

H
lv .

C
onsider

Π
=

Π
1
∪
Π

2
s.t.

Π
is

a
norm

al(H
C

F)
program

.H
lv ,although

sim
ilar

to
H

,adds
levelm

appings
to

dealw
ith

shared
cycles

betw
een

Π
2

and
Π

1 .M
ore

precisely,R
ules

(15),(16)
and

(17)
replace

R
ules

(3),w
here

non-ground
rules

contained
in

Π
2 ,i.e.,those

thatshall
be

grounded
via

traditionalgrounding,are
adapted

to
consider

the
levelm

apping.Further,by
adding

R
ules

(18),(19),(20)
and

(21),w
e

ensure
totallevelm

appings,transitivity,and
foundedness,respectively.A

dditionally,R
ules(22),(23),(25),and

(26)(and
thereby

replacing
R

ules
(1),(2)and

(14))w
e

ensure
localfoundedness

foreach
rule

in
Π

1
s.t.itis

know
n

w
hich

h
r

founds
w

hich
h,w

hich
is

necessary
for

levelm
appings.L

astly,w
e

replace
R

ule
(8)w

ith
R

ule
(24),so

a
rule

is
satisfied

w
hen

h
is

in
the

answ
erset.T

his
is

im
portantas

itensures
thata

rule
is

not“forced
to

found”
som

e
h
r ,w

hen
itcan

notdo
thatdue

to
ordering

constraints.

