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Abstract. Since the high-level modeling language of Answer Set Programming
(ASP) supports a compact, uniform representation of concepts like recursion,
transitivity, reachability, etc., the well-known Traveling Salesperson Problem
(TSP) can be conveniently expressed by just a few first-order rules. Such an en-
coding illustrates all building blocks of the Generate-and-Test modeling pattern
with optimization, which qualifies TSP as a comprehensive introductory example
to instruct and inspire ASP learners. When turning to the optimization perfor-
mance of ASP systems like clingo, the question what is an elegant encoding
appears in a new light, where TSP can give inspiration for ASP experts as well.

1 Encoding TSP in ASP
The following TSP instance is inspired by [6], also taking TSP as a modeling example:� �
place(b). link(b,h,2). link(b,l,1). link(b,p,1). % Berlin
place(d). link(d,b,2). link(d,l,2). link(d,p,4). % Dresden
place(h). link(h,b,2). link(h,l,2). link(h,w,3). % Hamburg
place(l). link(l,d,2). link(l,w,3). % Leipzig
place(p). link(p,b,1). link(p,d,4). link(p,h,3). % Potsdam
place(w). link(w,d,2). link(w,h,3). link(w,l,3). % Wolfsburg� �
The TSP is about finding a round trip that visits each place exactly once, where the
sum of connection costs is subject to minimization. For the given instance, there is a
unique optimal round trip taking b as the starting place: (b, p, h, l, w, d, b) with the sum
1 + 3 + 2 + 3 + 2 + 2 = 13 of connection costs.

A uniform first-order encoding, structured according to the Generate-and-Test mod-
eling pattern [7], can be written as follows in the language of the clingo system [3]:� �

1 % DOMAIN
2 start(X) :- X = #min{Y : place(Y)}.
3 % GENERATE
4 {travel(X,Y) : link(X,Y,C)} = 1 :- place(X).
5 {travel(X,Y) : link(X,Y,C)} = 1 :- place(Y).
6 % DEFINE
7 visit(X) :- start(X).
8 visit(Y) :- visit(X), travel(X,Y).
9 % TEST

10 :- place(X), not visit(X).
11 % OPTIMIZE
12 :~ link(X,Y,C), travel(X,Y). [C,X]� �

The encoding illustrates several crucial modeling features: (1) use of a #min aggregate
in line 2 to determine a lexicographically smallest starting place among arbitrary place

https://potassco.org/clingo/
https://potassco.org/clingo/
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identifiers, (2) choice rules with cardinality bounds in lines 4-5 that provide sets of con-
nections with exactly one incoming and one outgoing connection per place as solution
candidates, (3) positive recursion such that atoms derived by the rules in lines 7-8 yield
precisely the places reached from the starting place via connections of a solution can-
didate, (4) an integrity constraint in line 10 to discard solution candidates for which
default negation by not exhibits unreached places, and (5) a weak constraint stating in
line 12 that the sum of costs over the connections of solutions is subject to minimization.

2 A Closer Look at Optimization

The tuple [C,X] of the weak constraint in line 12 associates each place X with the
cost C for its outgoing connection. This representation exploits the cardinality bound of
the choice rule in line 4, asserting that neither less nor more than one cost is incurred per
place. However, the implied condition that lb =

∑
place(x)min{c | link(x,y,c)}

constitutes a tighter lower bound than 0 on the sum of connection costs is not reflected:
even if a solution whose sum of connection costs matches lb could be found, an ASP
system may need to continue search to eventually prove the solution’s optimality. In
general, (too) loose lower bounds may make proofs of optimality virtually infeasible.

A penalization scheme such that the difference to min{c | link(x,y,c)} is taken
as cost for a place x, also introduced and empirically studied by [4], looks as follows:� �

12 sort(X,N,C) :- link(X,Y,C), N = #count{D : link(X,Z,D), D <= C}.
13 gap(X,N,D-C) :- sort(X,N,C), sort(X,N+1,D), link(X,Y,D), travel(X,Y).
14 gap(X,N,D-C) :- sort(X,N,C), sort(X,N+1,D), gap(X,N+1,P).
15 :~ gap(X,N,P). [P,X,N]� �

In view of two gaps, amounting to a difference of 2 or 1, respectively, for the outgoing
connections of p to h and l to w, the sum 13 of connection costs for the optimal round
trip (b, p, h, l, w, d, b) is mapped to just 3, obtained by summing up the two gaps only.

While the reformulated OPTIMIZE part improves the optimization performance [4],
it makes the encoding harder to read and unsuitable for an introductory example. More-
over, the approach to exploit a partition of the atoms occurring in weak constraints along
with cardinality bounds on each part is of general relevance and also applied, e.g., by
aspcud [5]. However, introducing a respective penalization scheme by hand on a per-
problem basis is tedious and error-prone, and system support of such rewriting meth-
ods would be beneficial [1]. We expect that automated rewriting will be computation-
ally costly and imperfect when applied uninformed at the ground level, e.g., instances
like {travel(b,h); travel(b,l); travel(b,p)} = 1. and {travel(d,b);

travel(h,b); travel(p,b)} = 1. of the rules in lines 4-5 refer to both incoming
and outgoing connections, so that a partition of travel/2 atoms is difficult to recon-
struct. First-order rewriting, as supplied by the ngo tool, is limited by imperfect infor-
mation on instance properties, e.g., the unique cost per connection, as well as inherent
cardinality bounds for derived predicates. To not give up rewriting ideas altogether, as-
sertions similar to the #heuristic statements of clingo [3] may be the way to go for
empowering the automatic rewriting of weak constraints to improve the performance.
Such an approach could relieve the user of modeling burdens, comparable to the compu-
tational means supplied by ASP(Q) for replacing sophisticated saturation encodings [2].

https://potassco.org/aspcud/
https://potassco.org/ngo/
https://potassco.org/clingo/
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