
Explanations for Guess-and-Check ASP Encodings using
an LLM (Extended Abstract)

Tobias Geibinger1[0000−0002−0856−7162], Tobias Kaminski2[0000−0001−9776−0417], and
Johannes Oetsch3[0000−0002−9902−7662]

1 Institute for Logic and Computation, TU Wien, Austria
2 Bosch Center for AI, Renningen, Germany

3 Department of Computing, Jönköping University, Sweden
tobias.geibinger@tuwien.ac.at, tobias.kaminski@de.bosch.com,

johannes.oetsch@ju.se

Answer-Set Programming (ASP) [4] is a rule-based decision making and problem-
solving formalism used in many areas; among them are industrial optimisation, knowl-
edge management, or life sciences. Thus, it is of great interest in the context of explain-
ability [2]. To ensure the successful application of ASP as a problem-solving paradigm in
the future, it is crucial to investigate explanations for ASP solutions. Such an explanation
generally tries to give an answer to the question of why something is, respectively is not,
part of the decision produced or solution to the formulated problem.

An approach that addresses this problem is xclingo [1], which wraps around the well-
known ASP solver clingo [3] and provides explanations for the atoms in the produced
answer set. The method works by having the user annotate the rules of the original ASP
program with template sentences conveying the informal meaning of each rule. Those
template sentences are then instantiated with the concrete solution and strung together in
a derivation-like fashion.

Another related method for computing explanations for clingo programs that ad-
dresses the problem of why there is no solution is implemented as part of the clingo-
explaid tools (github.com/potassco/clingo-explaid). There, the input is an unsatisfiable
clingo program, and the output is a set of constraints that needs to be relaxed to produce
a solution.

In this work, we introduce a new approach which also aims at explaining the answer
sets of an ASP program. In particular, we focus on so-called guess-and-check programs,
which intuitively can be split into two parts: rules which generate candidate solutions,
and constraints which prune invalid candidates. Such programs are generally found when
ASP is used for combinatorial problem solving. In contrast to previous attempts, we use
a Large Language Model (LLM) [7] as interface between the user and the explanation
component. In particular, the LLM is used to interpret and formalise the questions of
the user regarding the provided answer set. For example, a user can ask a contrastive
question like “Why is the frame type aluminium and not carbon fiber?” and will receive
an answer in natural language. The formalised question is then passed on to the ASP-
based explanation component based on techniques described by Herud et al. [5], which
in turn provides a formal answer. The latter is then again passed to the LLM, which
translates it into natural language.

More precisely, our method relies on a technique for computing minimally unsatis-
fiable subsets (MUSs). When the input program is already inconsistent, this technique

github.com/potassco/clingo-explaid


2 T. Geibinger et al.

can be applied directly, and a reason for the inconsistency can be provided to the user
in natural language. Otherwise, the user can pose questions based on the answer sets.
Based on the type of question, the task of the LLM is to generate assumptions entailed
by the question in the form of additional constraints, which usually render the original
program inconsistent. An answer to the question can then be extracted from the MUSs
of the resulting program.

In general, there can be several possible explanations for a given question, and by
default, only one is displayed to the user in natural language.

The approach is implemented in Python and uses clingo via its API as an internal
solver. Furthermore, the LLM is queried through the OpenAI API. However, those
components are easily exchangeable with another solver and/or LLM.

The main advantages of our method are twofold. First, we heavily utilise natural
language, both for receiving the questions regarding the solution from the user and in
the answers provided to them. This allows for greater flexibility in what kind of question
can be asked and makes the answers more concise and understandable.

The second main advantage is the greater range of types of questions and thus
answers that are supported. The tool xclingo [1] only provides explanations of why an
atom is in the answer set; clingo-explaid only explains why there is no answer set. Our
method handles explanations that are contrastive in the sense that it provides an answer
based on why something is included instead of something else. Such explanations answer
why a decision has been reached in contrast to a different one, i.e., they answer questions
of the form “Why P rather than Q?”. It has been argued that contrastive explanations are
intuitive for humans to understand and produce, and also that standard “Why” questions
contain a hidden contrast case, e.g., “Why P ?” represents “Why P rather than not P ?”,
and that this is the more appropriate way to answer a “Why” question [6].

Furthermore, integrating the LLM enhances the flexibility of our interfaces for
question input and answer output. The LLM enables the classification of different types
of input questions, such as conflict explanations (why is there no solution), contrastive
explanations (why not A instead of B), and counterfactual explanations (why not B).
Additionally, it allows for different levels of control over the answers through three
alternative explanation modules for back-translation from ASP to natural language:
direct translation with or without prompt engineering, using a template language, or
using controlled natural language.

In summary, we developed a new method that can answer user questions about the
results of an ASP program in natural language. The approach combines the stability
of formal reasoning for deriving explanations with the flexibility of LLMs to make the
approach accessible to users without knowledge about ASP. In the future, this integration
will also allow for further refinements. For example, the LLM could automatically detect
which constraints refer to the program input and which constitute background knowledge,
to provide more targeted answers to the user (i.e., when the user is only interested in how
the input needs to be changed). This may not be possible on a purely syntactical level.

Acknowledgments. This work was supported by funding from the Bosch Center for AI at
Renningen, Germany and has benefited from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101034440 (LogiCS@TUWien). Tobias



Explanations for Guess-and-Check ASP Encodings using an LLM (Extended Abstract) 3

Geibinger is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Institute
of Logic and Computation at the TU Wien.

References

1. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set programming. In:
Technical Communications of the 36th International Conference on Logic Programming (ICLP
2020). EPTCS, vol. 325, pp. 124–136 (2020)

2. Fandinno, J., Schulz, C.: Answering the "why" in answer set programming - A survey of
explanation approaches. Theory Pract. Log. Program. 19(2), 114–203 (2019). https://doi.org/
10.1017/S1471068418000534

3. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary
report. CoRR abs/1405.3694 (2014), arxiv.org/abs/1405.3694

4. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic
Programming, Proceedings of the Fifth International Conference and Symposium. pp. 1070–
1080. MIT Press (1988)

5. Herud, K., Baumeister, J., Sabuncu, O., Schaub, T.: Conflict handling in product configu-
ration using answer set programming. In: Proceedings of the ICLP 2022 Workshops, 2022.
CEUR Workshop Proceedings, vol. 3193. CEUR-WS.org (2022), https://ceur-ws.org/Vol-3193/
paper2ASPOCP.pdf

6. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence 267, 1–38 (2019). https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007

7. Raiaan, M.A.K., Mukta, M.S.H., Fatema, K., Fahad, N.M., Sakib, S., Mim, M.M.J., Ahmad,
J., Ali, M.E., Azam, S.: A review on large language models: Architectures, applications,
taxonomies, open issues and challenges. IEEE Access 12, 26839–26874 (2024). https://doi.
org/10.1109/ACCESS.2024.3365742, https://doi.org/10.1109/ACCESS.2024.3365742

https://doi.org/10.1017/S1471068418000534
https://doi.org/10.1017/S1471068418000534
https://doi.org/10.1017/S1471068418000534
https://doi.org/10.1017/S1471068418000534
arxiv.org/abs/1405.3694
https://ceur-ws.org/Vol-3193/paper2ASPOCP.pdf
https://ceur-ws.org/Vol-3193/paper2ASPOCP.pdf
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742
https://doi.org/10.1109/ACCESS.2024.3365742


4 T. Geibinger et al.

Program

ASP 
Solver

Facts

Question

Answer Sets

LLM

Assumptions Conflicting 
Constraints

Answer

Fig. 1. Overview of our explanation method.

A System Overview

Figure 1 shows an overview of the method, especially how the components interact. It
should be noted that the design is modular and the concrete underlying ASP solver and
LLM are not fixed.

The individual steps can be described as follows:

1. The basic input is an ASP program that includes input facts. The latter generally
represents the input instance data, whereas the program remains largely fixed for a
particular problem.

2. The input is then passed to an ASP solver, which is tasked with providing an answer
set.

3. If the problem has a solution, the corresponding answer set is printed. Otherwise,
we jump directly towards finding a minimally unsatisfiable set of constraints.

4. After that, the user is asked if they have any questions regarding the answer set.
Preferably those are questions that are directly contrastive or “why” questions for
which the contrast can be inferred.

5. The user question is then passed on to the LLM, which implicitly classifies the
type of question, using the information provided in a custom prompt (i.e., conflict
explanation, contrastive explanation or counterfactual explanation).

6. Based on the custom prompt, the LLM extracts assumptions about the answer
set which corresponds to the question. The custom prompt contains several in-
context examples, ASP background, as well as the input, and tasks the LLM to
produce ASP constraints, which force certain atoms to be true or false, respectively.
Those constraints can be viewed as assumptions on the truth values of these atoms.



Explanations for Guess-and-Check ASP Encodings using an LLM (Extended Abstract) 5

Intuitively, if the user asks “Why P and not Q?”, the assumptions will enforce a
counterfactual where P is false and Q is true.

7. Subsequently, the generated assumptions are added to the original ASP program.
8. With these assumptions in place, the ASP solver is then tasked with finding a

minimally unsatisfiable set of constraints for this scenario, thus giving a formal
explanation as to why the counterfactual cannot hold.

9. Finally, the LLM is provided with the violated constraints and prompted to trans-
late the constraints into natural language to summarise this information. For this
translation, one of at least three alternative approaches can be applied:

– direct back-translation using the LLM,
– using a template language to constrain the output, or
– using controlled natural language to have complete control over the shape of

the output.

B Example

Example 1. Consider the following input program, representing the 3-colourability
problem with a simple instance of three nodes:

% coloring.lp

% choose a color for each node
{ chosenColor(N,C) : color(C) } = 1 :- node(N).

% adjacent nodes are not allowed to have the same color
:- edge(N1,N2), chosenColor(N1,C), chosenColor(N2,C).

% input
color(red).
color(green).
color(blue).
node(1..3).
edge(1,2).
edge(1,3).
edge(2,3).

An example execution of the explainer will look as follows:

> python main.py examples/coloring.lp
Answer:
chosenColor(3,red) chosenColor(2,green) chosenColor(1,blue)
node(1) node(2) node(3) edge(1,2) edge(1,3) edge(2,3)
color(red) color(green) color(blue)
Question:
why are node 1 and node 2 not both blue?

Explanation:



6 T. Geibinger et al.

Node 1 and node 2 are not both blue because there is an
edge between them, and adjacent nodes are not allowed to
have the same color.

In this example, the question “Why are node 1 and node 2 not both blue?” can be
reformulated as “Why is node 1 blue and node 2 green in contrast to node 1 blue and
node 2 blue?” from which the following assumptions are generated by the LLM:

:- chosenColor(1,blue), chosenColor(2,green).
:- not chosenColor(1,blue).
:- not chosenColor(2,blue).

The ASP program joined with these assumptions is now inconsistent. The ASP solver
is then used to search for a minimal set of constraints from the original program, whose
removal restores consistency. In this case, this is achieved by removing an instance of
the constraint that expresses that adjacent nodes are not allowed to have the same colour.
The LLM finally translates this information into natural language to produce the answer
to the initial question.

In order to compute the minimally unsatisfiable set of constraints, we use the follow-
ing approach. First, the program is rewritten so that new dummy atoms are added to the
head of each constraint. In this way, each set of answers will show which constraints have
been violated. We can then compute answer sets where the dummy atoms are minimal
(either subset minimal or cardinality minimal). Those sets are generally called minimal
correction sets. Lastly, we generate a hitting set of all minimal correction sets, which
corresponds to a minimally unsatisfiable set of constraints. The approach we employ in
this part of our method is largely based on the methods for computing minimal correction
sets and minimally unsatisfiable sets described in [5].


	Explanations for Guess-and-Check ASP Encodings using an LLM (Extended Abstract)

