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A Sample Database
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Could be viewed as a Constraint Problem

JXU
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Positive
p :—- primary, male, married, no child.
p :- university, female, divorced, no child.
p :- university, female, married, children. Goal:
p :- university, female, single, no child. F"Kiadeﬁnmon
p :—- secondary, female, divorced, no_child. fOrpihatsahsﬂes
p :- secondary, female, single, children. all the constraints
p :- secondary, male, married, children. ... that is more compact
P :— primary, female, married, no_ child.
p :- secondary, male, divorced, no child. ... and generalizes
well to new instances
Negative from this domain
:- p, primary, male, single, no child. Jj --- While possibly
:- p, primary, male, single, children. | Violating some of the
- P, secondary, male, single, no child. training constraints
- P, secondary, male, divorced, children.
:— p, university, female, divorced, children.
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Could be viewed as a Constraint Problem J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Goal:

Find a definition
for p that satisfies
all the constraints

p :- married. ... that is more compact

:— single, female.
IS 1Ng-Le, ... and generalizes

p :- divorced, no child. well to new instances
from this domain

... While possibly
violating some of the
training constraints
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Biases in Machine Learning J!U
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The Need for Biases in Learning Generalizations

Tom M. Mitchell
Computer Science Department
Rutgers University
New Brunswick, NJ 08904

May, 1980

Abstract

The ability to make an appropriate "inductive leap" when generalizing
from a small set of training instances is possible only under a priori biases
for choosing an appropriate generalization out of the many possible,
Understanding the origins and justification of such biases is critical to
further progress in the field of machine learning. The notion of an UNbiased
learner is defined, then the notion of bias, its usefulness, and some classes
of justifiable biases are considered.

J. Firnkranz | V1.0
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The Need for Biases in J!U

Learning Generalizations (Mitchell, 1980) ionses cenen

Mitchell introduced the term bias into machine learning

In this paper, we use the term bias to refer to any basis
for choosing one generalization over another, other than
strict consistency with the observed training instances.

As possible biases he suggested
domain knowledge for limiting the hypothesis space
intended use of the learned theories (e.g., misclassification costs)
knowledge about the source of the training data (e.g., sample bias)
analogy with previously learned generalizations
bias towards simplicity and generality

J. Firnkranz 6 J. Firnkranz | V1.0



Interpretability vs. Complexity J A4 U
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Conventional Rule learning algorithms tend to learn short rules
They favor to add conditions that exclude many negative examples

Short rules and rule sets are better

long rules are less understandable, therefore short rules are
preferable

short rules are more general, therefore (statistically) more reliable and
would have been easier to falsify on the training data

Shorter rules or rule sets are not always better

Predictive Performance: Longer rules often cover the same number
of examples than shorter rules so that (statistically) there is no
preference for choosing one over the other

Understandability: In many cases, longer rules may be much more
intuitive than shorter rules

— we need to understand understandability!
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The LORD Rule Learner J!U

(Huynh, Fiimnkranz, Beck 2023) UNIVERSITAT Ling

Key idea
aim at learning the
local optimum in a local neighborhood around the training example
the XAl idea of providing
the result is one rule for each training example
almost, because suboptimal and duplicate rules are removed

Implementation characteristics https://github.com/vgphuynh/LORD I

Make use of efficient data structures known from association rule
mining like PPC-trees and N-lists

can efficiently summarize the dataset in one pass
Use a for guiding its
e.g. the m-estimate
Inherently parallel search for locally optimal rules
LORD can efficiently tackle very large example sets

J. Firnkranz 10 J. Firnkranz | V1.0
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Empirical Results J!U
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24 datasets with various sizes P

# Datasets # Exs. # Attr. 1“};}‘;23 hé;iﬂgsg Distr(i(ly)éL;tions
1 lymph 148 19 categorical no 347T‘14;2‘

2 wine 178 14 numeric no 33.2; 39.9; 26.9
3 vote 435 17 categorical yes 54.8; 45.2

4 breast-cancel 699 10 numeric yves 65.5; 34.5

5] tic-tac-toe 958 10 categorical no 65.3; 34.7

6 german 1,000 21 mix no 70; 30

i car-eval 1,728 7 categorical no 22.3; 3.9; 70; 3.8
8 hypo 3,163 26 mix yes 95.2; 4.8

9 kr-vs-kp 3,196 37 categorical no 52.2; 47.8

10 waveform 5,000 22 numeric no 33.2; 32.9; 33.9
11 mushroom 8,124 23 categorical yves 51.7; 48.3

12 nursery 12,960 9 categorical no 35550;”219 al.2
13 adult 48,842 14 mix ves 76; 24

14 bank 45,211 17 mix no 11.7; 88.3

15 skin 245,057 4 numeric no 20.7; 79.3

16  s-mushroom 61,069 21 mix yves 44.5; 55.5

17 connect-4 67,557 42 categorical no 65.8; 24.6; 9.6
18  PUC-Rio 165,632 19 mix no ah 20 1o
19 census 299,285 41 mix ves 93.8; 6.2

20 gas-sensor-11 919,438 11 numeric no 32.9; 29.8; 37.3
21 gas-sensor-12 919,438 12 numeric no 32.9; 29.8; 37.3

the largest with 5 million 22 covertype 581012 55 mix no 0168 38

9.9; 6; 9.5; 5.4;

examples and 19 attributes 23 pamap2 1,942,872 33 numeric yes %i), 513.2853 1§: 8:7
5.1; 12.3; 8.5; 9.
24 susy 5,000,000 19 numeric no 54.2; 45.8
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JXU
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Empirical Results — Accuracy and Run-time

Accuracy
better than Ripper and other modern rule learner (not ensembles)

Lord Lord Lord* Ripper Ripper PyIDS PyIDS
# Datasets (m = 0.1) (bestm) (m=0.1) (0=0) (o=2) CMAR CG "5 (k= 150)
Avg. acc. (3-6,8-9,11,13-16) 0.9416 0.9436 0.9415 0.9365 0.9374 0.916 0.9222 0.8137 0.8312
Avg. acc. (1-22) 0.9268 0.9311 0.9266 0.9073 0.9152 0.8056 // 0.7077 0.7287
Avg. ranks (1-22) 3.14 1.84 3.3 4.48 3.59 5.2 // 7.57 6.89
only few algorithms could tackle the largest datasets

Lord Lord Lord* Ripper Ripper PyIDS PyIDS

7* Datasets (m = 0.1) (bestm) (m=0.1) (0o=0) (o=2) CMAR cG (k = 50) (k = 150)
i N . aan Out of Out of : Out of Out of

23 pamap?2 6063 6044 386 memory memory 50.4 // memory memory
y . P 01 ¢ aEr Out of Out of : Out of L o
24 susy 52592 51218 15350 memory memory 97.4 time 9435 29109
Avg. runtime (1-22) 94 95.1 31.5 342 8642.8 116 // 274.7 2568.6
Avg. ranks (1-22) 3.5 3.75 1.73 2.95 5.09 4.89 // 6.27 7.82

J. Furnkranz
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Empirical Results — Number of Rules JY¥YU
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Number of learned rules
enormous, e.g., 1.6 million rules for the susy dataset

Lord Lord Lord* Ripper Ripper PyIDS PyIDS
# Datasets (m = 0.1) (best m) (m = 0.1) (o = 0) (0 = 2) CMAR CG (k= 50) (k = 150)
I e o F . o r ] o ¢ Out of Out of " ] Out of Out of
23  pamap?2 16827 3.07 14137 3.00 15824 3.05 memory memory 486 2.54 // memory memory

Out of Out of Out of
24 susy 1611856 4.30 1201338 4.10 976522 4.30 memory memory 637 1.40 time 18 2.0 63 2.0
Avg. values (1-22) 8390.6 3.54 8261.4 3.5 6361.2 3.49 104.6 4.12 111.5 3.74 1945.1 3.06 // 16.8 2.06 50.4 2.1
Avg. ranks (1-22) 6.82 5.86  6.39 5.82  5.25 495 273 516 223 395 645  4.86 // 1.91 2.45 4.23 2.93
However, s the

LORD as a post-hoc XAl tool
transductive learning of rules (this is harder than you may think...)
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Coverage Spaces J "4 U

. JOHANNES KEPLER
(Furnkranz & Flach 2005) UNIVERSITAT LINZ

good tool for visualizing rule learning algorithms
each point is a rule covering p positive and » negative examples

universal rule:

4 | all examples

all positive and

no negative / are covered
examples (most general)
are covered .
o
§ - random rules:
iso-accuracy: § p=n pr(idlct W'th_th
cover same = > ?Om 0SSEes Wi
T g . ixed probability
positive 2
and negative = L
examples U opposite rule:
all negative and
empty rule: no positive
no examples /V - - examples
are covered 0 N are covered

(most SpeCifiC) covered negative examples

J. Firnkranz 14 J. Firnkranz | V1.0



Learning Conjunctive Rules J A4 U
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Most algorithms learn conjunctive rules
by greedily adding one conjunct at a time
so that it maximizes some heuristic function h(p,n)

J. Firnkranz 15 J. Firnkranz | V1.0



CN2-Style Rule Induction

JXU
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Most popular type of rule induction (Clark & Niblett, 1989)

used in most covering (separate-and conquer) rule learning
algorithms

Algorithm 2 CN2-type rule induction

1
2
3
4:
5%
6.
7
8
9

R=1
while ¥ # () do

: function CN2(E,F h) /
1 »

4= Arg MaX,/— (B ). B Fycc h(r')

— Uqr
F<+—FE \ B,

end while
return R

: end function

‘ 

(Greedily) find a subset B of
all features F so that some
quality function # is optimized

Covering: Repeat until all
examples are covered by
one (or more) rule

J. Furnkranz
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Learning DNF Expressions J A4 U
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successive refinement of individual rules (red)

reductions in coverage space by removing covered examples
(shades )

bulding up the DNF by adding one conjunct at a time (green)

P

J. Firnkranz 18 J. Firnkranz | V1.0



Heuristics: Precision

JXU
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basic idea:

percentage of positive
examples among covered
examples

effects:

rotation around origin
(0,0)

all rules with same angle
equivalent

in particular, all rules on
P/N axes are equivalent

typically

—

—
—— —
——
—
—
—— —

- —
| — —
— —

J. Furnkranz
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Heuristics: m-Estimate J ! U

JOHANNES KEPLER
UNIVERSITAT LINZ

basic idea:

Initialize the counts with m
examples in total, distributed
according to the prior

distribution P/(P+N) of pand =« R o
effects: A L e
origin shifts to A v P [
with increasing m, the lines _,,/ P ’_f_,,..f-" *___'_,_,.--—--*"
become more and more S e et e
paraIIeI o — = =
can be re-interpreted as a
trade-off between WRA an o | im0

precision/confidence

J. Firnkranz 20 J. Firnkranz | V1.0



Discriminative Rules J ! U
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= Allow to quickly discriminate an object of one category from
objects of other categories

= Typically a few properties suffice

Example:

J. Farnkranz 21 J. Firnkranz | V1.0



Characteristic Rules J ! U
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= Allow to characterize an object of a category

“ Focus is on all properties that are representative for objects of
that category

Example:

! t Note: Characteristic rules
tend to be more complex

J. Flrnkranz J. Firnkranz | V1.0



Discriminative Rules vs. Characteristic Rules J!U
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Michalski (1983) discerns two kinds of classification rules:

A way to distinguish the given class from other classes

Features — Class

Most interesting are minimal discriminative rules.

A conjunction of all properties that are common to all objects in the
class

Class — Features

Most interesting are maximal characteristic rules.

J. Firnkranz 23 J. Firnkranz | V1.0



Characteristic Rules J ! U
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= An alternative view of characteristic rules is to invert the
implication sign
= All properties that are implied by the category

Example:

J. Farnkranz 24 J. Firnkranz | V1.0



Inverted Coverage Spaces

JXU
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(Stecher, Janssen, Furnkranz 2014) UNIVERSITAT LINZ

Regular rule learning heuristics
quickly exclude negative examples

e.g., : h(p,n):ﬁ
is maximal if no negative examples are covered

(regardless of the number of positive examples)

Inverted heuristics instead maintain
a high coverage of positive examples

e.g., u(p,n)=rs—
_ o » (P—p)+(N—n)
is maximal if all positive examples are covered

(regardless of the number of negative examples)

General approach: h(N—n, P—p) = y(p,n)
swap the role of positive and negative examples

negate all the inputs
i.e., learn conjunctions of that

0 ] N

0 | N

This is similar to
inverting the implication

J. Furnkranz 25
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Empirical Results:

Inverted heuristics tend to work better

JXU
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Dataset

[ h_;.-r'r:.-_' v = ]

hprr_‘r_‘ ll;]r!"tﬂ [lrﬂp [lrnf.ﬂf

{h'!'u,u”,l' {h.-rurasrn:|

h"”}’ ][IJT"!'-'L" 'llnp [|mc.:r h””—‘-‘" l[prﬁc I;lfap !Imr.ﬂf

breast-cancer

68.53 72.38 72.03 73.43

69.58 70.63 71.33 72.73171.33 72.03 72.38 713.78

Critical Distance

9 8 7 6 5
L. 1 5 1 4 1 4 |

(hprec ;hprec )

(h.'ap s qfap )

( h.l'ap :hl'ap )

( hmeshhmesf)
(Pmest, Yprec)

(hprec ' urap )
(hmesr: u.‘ap )

(hprec :umest)
(Pmest.Ymest)
(h.'ap :umesf)

(hfap ,u,nrec }
(hprec :upre-::)

tic-tac-toe

vole
Z00

07.39 938.02 97.60 97.81
94.94 93.56 94.25 94.48
84.16 88.12 92.08 90.01

97.60 98.02 97.60 97.91|98.12 98.02 97.60 97.81
05.40 94.25 94.25 94.94|93.33 93.56 94.71 96.09
86.14 88.12 92.08 90.10|89.11 88.12 92.08 90.10

average rank

3.075 2.400 1.975 2.550

3.000 2.500 1.975 2.525]|2.700 2.625 2.225 2.450

J. Furnkranz
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Inverted Heuristics — Rule Length

JXU
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Inverted Heuristics tend to learn longer rules

If there are conditions that can be added without decreasing coverage
on the positive examples, inverted heuristics will add them first
(before adding discriminative conditions)

(htap, hiap)|(hiap, hiap) (htap, htap)|(hiap, hiay)
Dataset R L R L ||Dataset B L R L
breast-cancer | 25 67 | 38 173 |lionosphere 17 25 8 42
car 107 495 [107 506 ||labor o A S
contact-lenses| 5 14 5 15 ||lymphography| 18 42 11 47
futebol 4 17 20 9 monk3 13 38 11 32
alass 50 103 | 14 83 |/mushroom i S T 35
hepatitis 13 26 7 46 ||primary-tumor{ 80 319 | 72 5I8
horse-colic 4 114 | 19 111 ||soybean 62 134 | 45 195
hypothyroid | 27 65 9 69 |[|tic-tac-toe 22 84 16 69
iris T 15 5 17 |[|vote 13 48 12 58
idh 4 35 - 200 19 19 6 14
averages 28.2 B5.6/20.6 106.2

J. Furnkranz
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Example Rules — Mushroom dataset JXYU
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The best three rules learned with conventional heuristics

poisonous :—- odor = foul. >
poisonous :—- gill-color = buff. -
poisonous :—- odor = pungent. 5
The best three rules learned with uAeLfeq penuefice @
poisonous :—- vell-color = white, gill-spacing = close,
no bruises, ring-number = one,
stalk-surface-above-ring = silky.
poisonous :—- vell-color = white, gill-spacing = close,
gill-size = narrow, population = several,
stalk-shape = tapering.
polisonous :- stalk-color-below-ring = white,
ring-type = pendant, ring-number = one,
stalk-color-above-ring = white,
cap-surface = smooth, stalk-root = bulbuous,

gill-spacing = close.

J. Firnkranz 28 J. Firnkranz | V1.0



Example Rules —
Coronary Heart Disease

JXU

. JOHANNES KEPLER
(Stecher, Janssen, Furnkranz 2016) UNIVERSITAT LINZ

[17] O] class 1 :— holst < 0.0001, vkgg = 1, ergfr = 1, ergrt = 1.
[17]] O] class 1 :-— ergg < 180.0001, ergst < 0.2001, vkgg = 1,
ehoef >= 68, ergfr = 1.
[14]] O] class 1 :— holst < 0.2001, vkgg = 1, ecgfr >= 70, ergd >= 100.
Longer rules with higher coverage (compared to h__ )
p
32|0] class 1 :- vkgg = 1, ergkp = 1, ergny = 1, ergrt = 1,
hight >= 154, ergfr = 1, holst < 0.3001, ecgpr = 1,
holfr = 1, ehoef >= 65.
28|0] class 1 :— ergst < 0.3001, vkgg = 1, ergny = 1, hdl >= 0.72,
ergfr = 1, ecgrt = 1, ecgpr = 1, fib < 4.5001,
vkghl = 1, holst < 0.2001, ecgst = 1, holrt = 1, 1dl < 4.7601.
25|0] class 1 :- ergst < 0.2001, vkgg = 1, ergny = 1, ergrt = 1,
ergfr = 1, ecgpr = 1, ergkp = 1, ecgrt = 1, holfr = 1,
ehoef >= 64, ua < 308.0001.

J. Furnkranz
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Example Rules — Brain Ischemia J!U
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[149] 0] ischemia :— b.i. < 60.0001.
[140] O] ischemia :— b.i. < 70.0001, fibrin.
[137] O] ischemia :— b.i. < 75.0001, fibrin. >

NN

Regular heuristics find Barthel index and fibrinogen
value as relevant for a brain stroke.

Inverted heuristics in addition refer to

ag&mstollc bla‘d pressure, and chw

[147] 0] ischemia g rrrrdyast >= 70, fibrin. >= 2.8, b.1i. M
[139\ 0] ischemia :— age >= 58, rrrrdyast >= 80, b.i. < 60.0001
[107] 0] 4ischemia :- rrrrdyast.. >= 80, fibrin. >= 3.5, b.1. < 65.0001, chol. >= 5.2.

J. Firnkranz 30 J. Firnkranz | V1.0



Learning Disjunctive Rules J A4 U
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Disjunctive rules can be learned analogously to conjunctive ones

when these are combined conjunctively, it effective
definition for the concept

Learning a disjunctive single rule in coverage space:

P -

J. Firnkranz 31 J. Firnkranz | V1.0



The Duality of Conjunctive and
Disjunctive Learning J!U

UNIVERSITAT LINZ

By Boolean Algebra, disjunctive rules can be learned as
conjunctions

M
— & fTue
++¢ falze
—&—d
+4&d
' —{——|,|].l_-".l—|,|]'
# 77 | +edva
;i
4
0 =
disjunctive learning of a disjunctive rule conjunctive learning of a disjunctive rule
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The Duality of Conjunctive and

Disjunctive Learning

JXU
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Analogously conjunctive rules can be learned as disjunctions

+€- e

Jﬂwﬁﬁf++cﬁﬂ

conjunctive learning of a conjunctive rule

a

—&—cW —b

+icab

—&C
+4-C

—+ e

+4¢ false

p

disjunctive learning of a conjunctive rule

J. Furnkranz 33
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Learning DNFs and CNFs J!U
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DNF: disjunctively combining conjunctive rule bodies
often learned via covering on the positives,
l.e., conjunctive rules that cover

some examples of the class to learn
(almost) no examples of the other classes

are successively added to the rule set until all examples of the class
to learn are covered
CNF: conjunctively combining disjunctive rule bodies
can also be learned via excluding on the negatives
l.e., disjunctive rules that exclude

some examples of the other classes
(almost) no examples of the class to learn

are successively added to the rule set until no examples of other
classes are covered

J. Firnkranz 35 J. Firnkranz | V1.0



Inversion of Biases J ! U
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Note that while the learned DNF and CNF expressions are
equivalent w.r.t. the training examples, they are not equivalent

w.r.t. unseen examples

in fact, the learning biases will be inverted as well!

if the conjunctive learner has a bias towards learning very specific
concepts, it will also learn a very specific description for the negated

class
inverting this results in a very general description for the positive class

Explains previous results on learning with inverted heuristics:
using inverted heuristics results in longer rules with higher coverage

because more general conditions are selected
the focus for condition selection is maintaining a good coverage of positives,
not on quickly excluding many negatives

36 J. Flrnkranz | V1.0
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NegLORD J!U
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Learn CNF descriptions using LORD as a DNF learner
Generally works well (albeit no miracles)

DATA SET RIPPER K-CNF LORD LORD
AVG. RANK 2867 2.64 2t 2.19

some datasets seem to be better learnable with CNF, others with DNF
more or less confirming the results of previous works

A few caveats:
Efficiency:

data structures of LORD are optimized for sparse data

negated features are dense — NegLORD is considerably slower
Multi-class:

we have to learn descriptions for every negated class
negated classes have more examples than non-negated classes

J. Firnkranz 38 J. Firnkranz | V1.0



Limitations of Uni-Directional Refinements J!U
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— The regions in coverage space that can be reached with
successive (conjunctive or disjunctive) refinements are limited

P —————————————————————————————————————— "
| Reachable with
Unreachable Disjunctive s
Refinements  V///////, /1
4 Current
i Rule
Reachable with
Conjunctive Unreachable
Refinements
0 N
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Bi-Directional Refinements JY¥YU
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This can be overcome with by allowing successive alternations of
conjunctions and disjunctions

P . 2
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Bi-Directional Refinements JY¥YU
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...which essentially corresponds to multiple alternating AND/OR

layers

J. Firnkranz 41 J. Firnkranz | V1.0



Learning Mixed Conjunctive
and Disjunctive Rules J!U

(Beck, Furnkranz, Huynh 2023) UNIVERSITAT LINZ

LORD: A (powerful) conventional rule learner (i.e., DNF learner)

NegLORD: Learn a CNF by inverting the problem to learn a DNF on the
negated classes and negated inputs

CORD: Allow a combination of conjunctive and disjunctive layers to
potentially learn the best of both worlds

/ LORD \ LORD

- VAN = VAN Vv
1 -—(
OO |,
b (0)H—(1
1
OO o @
s @1 0
e D=0
DDA
9 (- 2(@O—(—(N )

J. Firnkranz | V1.0
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Results

JXU
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As known from previous works, some concepts can be better
learned in CNF, some in DNF

CORD is in most (but not all) cases better than either
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Going Deeper

JXU

JOHANNES KEPLER
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CORD has 3 layers by default (disj./conj./disj.)

More layers could be added with the same setup

Results show modest but not consistent improvements for
carefully tuned networks

FROM — TO 2—3 2—4 2—=95 3—>4 3—5 4 —5
# IMPR. 6219 6189 6788 4407 4877 3189
# DET. 5274 5301 6057 4452 5007 3289
% IMPR. 24.75 24.63 27.01 17.54 19.41 12.69
% DET. 20.99 21.09 24.10 17.72 19.92 13.09
VALUES FOR BEST FIVE-LAYERED CORD:

# IMPR. 126 139 144 86 97 40
# DET. 48 53 52 62 56 17
% IMPR. 43.45 47.93 49.66 29.66 33.45 13.79
% DET. 16.55 18.28 17.93 21.38 19.31 5.86
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Analysis of Deeper Networks JXYU

JOHANNES KEPLER
UNIVERSITAT LINZ

positive and negative correlation of various properties in the
conjunctive and disjunctive layers of 5-layer networks with overall
accuracy

CORD DoRc
D1 CQ D3 04 Cl DQ 03 D4
m 0.154 0.020 -0.101 -0.131 | 0.081 0.175 0.019 -0.098
# Rules -0.189 -0.145 -0.092 -0.043 | -0.084 -0.253 -0.134 -0.081
# Concepts - 0.095 0.045 0.008 - 0.060 0.151 0.074
Avg. Depth - 0.111  0.057 -0.018 - 0.117 0.159 0.107
Accuracy 0.203 = 0.520 0.690 - -0.041 =~ 0.342 = 0.564 -

e.g., higher values of the m-parameter (yielding more general rules)
are good in early layers, wheras lower values are better in later layers

accuracy increases in later layers
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Flat Rule Learning J ! U
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Flat Rule Sets can be converted into a network using a single
AND and a single OR layer (— a DNF expression)

e < | /
\ /
~ /
\ / T NN /
\ / \ = |/
\/ S\ Z

Each node in the hidden layer corresponds to one rule
typically it is a local pattern, covering part of the target
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Deep Rule Learning

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Deep Rule Networks with alternating AND and OR layers

corresponds to multiple rule layers

each conjunctive node corresponds to one rule
each disjunctive node corresponds to a rule set

Negated Normal Form (NNF)

M

M

55488 b

(avb)A(evd)AleV (f Ag)

Deep Rule Representation

b 1= h21, h22, h23.
h21l :- a. h22 :—- c. h2Z3 ::— e.
h21l :- b. h22 :- d. h23 - I, g

Flat Rule Representation (DNF)

b - a, ¢, . I - b, ¢, e.
b - a, ¢, I, g. } - b, ¢, L, qg.
F - a, d, e. } - b, d, e.
b - a, d, £, g. } - b, d, £, g.
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General Approach J A4 U

JOHANNES KEPLER
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Provide a fully connected network structure
find binary weights for the edges

* 7 input features
* 2 hidden layers of size 6

— 7X6+6X6+6X%X1=84 weights

* we also need to store and
propagate the activation
of each node for each
training example

— (7+6+6+1)X N variables
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Simple Greedy Local Search JXYU

(Beck & Fiirnkranz 2020) XVERSITAT LiND

Find the weights using a simple optimization algorithm to learn
both, deep and shallow representations

Fix a network architecture

Shallow, single layer network RNC: [20]

Deep 3-layer network DRNC(3): [32, 8, 2]

Deep 5-layer network DRNC(5): [32, 16, 8, 4, 2]
Initialize Boolean weights probabilistically

Use stochastic local search to find best weight ,flip” on a mini-batch
of data until convergence

Optimize finally on whole training set

See if deep structure can be useful
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Results on Artificial Datasets J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

20 artificial datasets with 10 Boolean inputs, 1 Boolean output
generated from a randomly initialized (deep) Boolean network

seed 9o(+) DRNC(5) DRNC(3) RNC RIPPER CART
@ Accuracy 0.9467 0.9502 0.9386 0.9591 0.9644
@ Rank 1.775 1.725 2.5

cD

DRNC(3)
DRNC(5)

RNC

DRNC(3) [DRNC(5)] outperforms RNC on a significance level of
more than 95% [90%)]
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Learning Curves (Artificial Datasets)

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Accuracy

0.90

0.85 +

0.80

0.75 +

Average accuracy over number of mini-batches

T T T T T T
0 10 20 30 40 50

Mini-batch

DRNC(3) and DRNC(5) converge faster than RN
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Results on Real-World (UCI) Datasets

JXU

JOHANNES KEPLER

(Beck & Furnkranz 2021) {NIVERSITAT LINZ

dataset %(+) DRNC(5) DRNC(3) RNC RIPPER CART
car-evaluation 0.7002 0.8999 0.9022 0.8565 0.9838 0.9821
connect-4 0.6565 0.7728 0.7712 0.7597 0.7475 0.8195
kr-vs-kp 0.5222 0.9671 0.9643 0.9725 0.9837 0.989
monk-1 0.5000 1 0.9982 0.9910 0.9478 0.8939
monk-2 0.3428 0.7321 0.7421 0.7139 0.6872 0.7869
monk-3 0.5199 0.9693 0.9603 0.9567 0.9386 0.9729
mushroom 0.784 1 0.978 0.993 0.9992 1
tic-tac-toe 0.6534 0.8956 0.9196 0.9541 1 0.9217
vote 0.6138 0.9655 0.9288 0.9264 0.9011 0.9287
@ Rank 1.556 2 2.444

DRNC(5) has the best performance on these real-world datasets,
followed by DRNC(3)
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Optimization Using SAT J 4 U

JOHANNES KEPLER

(Seip et al. 2025) YN veERSITAT LINZ

If we ignore noise etc., and (for simplicity here, but not in general)
assume that all hidden layers have size m, a more precise
formulation could be the following:

» Given features f; ; (1=<i<nl<j<d)
» Find Ny = m? - (h— 1)+ m- (d + 1) Boolean values
> W =y (1<i<d 1<j<m)
> W) = (j) (2<I<h1<ij<m)
> W) = (D) (1<i<m)
> such that
ai) = Ny A wiy) (1<i<n1<k<m)
>a(.:' AT (3D Awl)) if 1is odd (2< 1< h)

k =
a-;)( = v;il(a(; DA WU)) if / is even
> yi = /\jn: ( () A W(h+1)) if h+ 1 is odd
Yi = Vf;l( (hH) A (hH)) if h+ 1 is even

/
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Results

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

‘ SA'IENI‘(SJSHS ‘ SA’IITINI*{:;?SHS | SA'IFJNI‘(]::‘;HS CART
Artificial Datasets
@ acc. ‘ 0.9857  0.9467 ‘ 0.9852  0.9502 | 0.9939 0.9386 0.9644
@ rank | 2.7 5.9 2.7 6.05 1.45 7 44
UCI Datasets

@ acc. ‘ 0.9682  0.9229 ‘ 0.9722 09190 | 0.9807 0.9153 0.9289

@ rank | 4.1429 4.4286 | 3.1429 5.7143 | 2.1429 5.8571 4.2857
Optimization works well

SAT trained outperform greedily trained networks :

as well as Ripper and CART i S
but deep structures do not seem to be helpful H j

:

because flat networks have fewer parameters?
... and scalability is a huge problem

+ X W
+ X

SAT ws RIPFER

SAT ws CART

+
Y
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Various ldeas for Speed-Up J! U

JOHANNES KEPLER
UNIVERSITAT LINZ

incremental freezing of weights via mini-batch optimization
find optimal weight settings for various small mini-batches
combine then so that successively stable hidden concepts emerge

use feedback from the SAT solver to recognize potentially noisy
examples and remove them

use LORD to focus on relevant features
each example can be represented by the rule LORD generates
may also help to cope with noise

pre-training using flat Boolean auto-encoders
in case these are feasible...
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Further Ideas to Explore

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Joint learning of multiple outputs with the
same network

rule learning algorithms learn each output
independently

joint optimization should yield smaller formulas
even for flat rule sets

Boolean auto-encoders

compressing Boolean data by learning a
function that can reconstruct the data from
fewer variables (— embedding)

layer-wise pre-training with auto-encoders
was one of the first successful deep learning
approaches

X

OO _Q
OO 00O

o

QO O
OO 00O
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Conclusions J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Learning

Locally optimal rule induction (LORD)

Learns one rule per example (in analogy to XAl approaches)
Learning

Characteristic Rules vs. Discriminative Rules

Related to learning disjunctive vs. conjunctive concepts
Learning

greedy training is possible but not very effective

SAT-based optimization is better but quite inefficient

Main bottleneck is scalability
Various ideas for improvements currently under investigation
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