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A Sample Database

 No. Education Marital S. Sex. Children? Approved?

1 Primary Single M N -

2 Primary Single M Y -

3 Primary Married M N +

4 University Divorced F N +

5 University Married F Y +

6 Secondary Single M N -

7 University Single F N +

8 Secondary Divorced F N +

9 Secondary Single F Y +

10 Secondary Married M Y +

11 Primary Married F N +

12 Secondary Divorced M Y -

13 University Divorced F Y -

14 Secondary Divorced M N +

Property of Interest
(“class variable”)
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Could be viewed as a Constraint Problem

 Positive

 Negative

p :- primary,    male,   married,  no_child.
p :- university, female, divorced, no_child.
p :- university, female, married,  children.
p :- university, female, single,   no_child.
p :- secondary,  female, divorced, no_child.
p :- secondary,  female, single,   children.
p :- secondary,  male,   married,  children.
p :- primary,    female, married,  no_child.
p :- secondary,  male,   divorced, no_child.

p :- primary,    male,   married,  no_child.
p :- university, female, divorced, no_child.
p :- university, female, married,  children.
p :- university, female, single,   no_child.
p :- secondary,  female, divorced, no_child.
p :- secondary,  female, single,   children.
p :- secondary,  male,   married,  children.
p :- primary,    female, married,  no_child.
p :- secondary,  male,   divorced, no_child.

:- p,  primary,    male,   single,   no_child.
:- p,  primary,    male,   single,   children.
:- p,  secondary,  male,   single,   no_child.
:- p,  secondary,  male,   divorced, children.
:- p,  university, female, divorced, children.

:- p,  primary,    male,   single,   no_child.
:- p,  primary,    male,   single,   children.
:- p,  secondary,  male,   single,   no_child.
:- p,  secondary,  male,   divorced, children.
:- p,  university, female, divorced, children.

Goal:
Find a definition
for p that satisfies
all the constraints

… and generalizes
well to new instances 
from this domain

… that is more compact

… while possibly 
violating some of the 
training constraints
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Could be viewed as a Constraint Problem

 Positive

 Negative

p :- primary,    male,   married,  no_child.
p :- university, female, divorced, no_child.
p :- university, female, married,  children.
p :- university, female, single,   no_child.
p :- secondary,  female, divorced, no_child.
p :- secondary,  female, single,   children.
p :- secondary,  male,   married,  children.
p :- primary,    female, married,  no_child.
p :- secondary,  male,   divorced, no_child.

p :- primary,    male,   married,  no_child.
p :- university, female, divorced, no_child.
p :- university, female, married,  children.
p :- university, female, single,   no_child.
p :- secondary,  female, divorced, no_child.
p :- secondary,  female, single,   children.
p :- secondary,  male,   married,  children.
p :- primary,    female, married,  no_child.
p :- secondary,  male,   divorced, no_child.

:- p,  primary,    male,   single,   no_child.
:- p,  primary,    male,   single,   children.
:- p,  secondary,  male,   single,   no_child.
:- p,  secondary,  male,   divorced, children.
:- p,  university, female, divorced, children.

:- p,  primary,    male,   single,   no_child.
:- p,  primary,    male,   single,   children.
:- p,  secondary,  male,   single,   no_child.
:- p,  secondary,  male,   divorced, children.
:- p,  university, female, divorced, children.

Goal:
Find a definition
for p that satisfies
all the constraints

… and generalizes
well to new instances 
from this domain

… that is more compact

… while possibly 
violating some of the 
training constraints

p :- married.

p :- single, female. 

p :- divorced, no_child.

p :- married.

p :- single, female. 

p :- divorced, no_child.
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Biases in Machine Learning
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The Need for Biases in 
Learning Generalizations

 Mitchell introduced the term bias into machine learning 
 
 
 
 

 As possible biases he suggested
 domain knowledge for limiting the hypothesis space
 intended use of the learned theories (e.g., misclassification costs)
 knowledge about the source of the training data (e.g., sample bias)
 analogy with previously learned generalizations
 bias towards simplicity and generality

(Mitchell, 1980)

In this paper, we use the term bias to refer to any basis 
for choosing one generalization over another, other than 
strict consistency with the observed training instances.

In this paper, we use the term bias to refer to any basis 
for choosing one generalization over another, other than 
strict consistency with the observed training instances.
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Interpretability vs. Complexity

 Conventional Rule learning algorithms tend to learn short rules
 They favor to add conditions that exclude many negative examples

 Typical intuition: Short rules and rule sets are better
 long rules are less understandable, therefore short rules are 

preferable
 short rules are more general, therefore (statistically) more reliable and 

would have been easier to falsify on the training data

 Claim: Shorter rules or rule sets are not always better
 Predictive Performance: Longer rules often cover the same number 

of examples than shorter rules so that (statistically) there is no 
preference for choosing one over the other

 Understandability: In many cases, longer rules may be much more 
intuitive than shorter rules

→ we need to understand understandability!
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The LORD Rule Learner

 Key idea
 aim at learning the best rule for each training example
 local optimum in a local neighborhood around the training example
 motivated by the XAI idea of providing explanations for each example

 the result is one rule for each training example
 almost, because suboptimal and duplicate rules are removed 

 Implementation characteristics  
 Make use of efficient data structures known from association rule 

mining like PPC-trees and N-lists
 can efficiently summarize the dataset in one pass

 Use a rule learning heuristic for guiding its greedy search
 e.g. the m-estimate

 Inherently parallel search for locally optimal rules
 LORD can efficiently tackle very large example sets

(Huynh, Fürnkranz, Beck 2023)

https://github.com/vqphuynh/LORDhttps://github.com/vqphuynh/LORD

https://github.com/vqphuynh/LORD
https://github.com/vqphuynh/LORD
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Empirical Results

 24 datasets with various sizes 
 
 
 
 
 
 
 
 
 
 
 
 

 the largest with 5 million 
examples and 19 attributes
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Empirical Results – Accuracy and Run-time

 Accuracy
 better than Ripper and other modern rule learner (not ensembles)

 
 
 

 Run-time
 only few algorithms could tackle the largest datasets
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Empirical Results – Number of Rules

 Number of learned rules
 enormous, e.g., 1.6 million rules for the susy dataset 

 
 
 
 
 

 The rule sets are certainly not interpretable
 However, each rule is the perfect explanation for one of the training 

examples

 Ongoing Work:
 LORD as a post-hoc XAI tool
 transductive learning of rules (this is harder than you may think…)
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Coverage Spaces

 good tool for visualizing rule learning algorithms
 each point is a rule covering p positive and n negative examples

universal rule:
all examples 
are covered

(most general)

empty rule:
no examples 
are covered

(most specific)

perfect rule:
all positive and 

no negative
examples 

are covered

random rules:
predict with

coin tosses with
fixed probability

opposite rule:
all negative and

no positive 
examples 

are covered

iso-accuracy:
cover same
amount of
positive

and negative
examples

(Fürnkranz & Flach 2005)
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Learning Conjunctive Rules

Most algorithms learn conjunctive rules
 by greedily adding one conjunct at a time
 so that it maximizes some heuristic function h(p,n)
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CN2-Style Rule Induction

 Most popular type of rule induction (Clark & Niblett, 1989)
 used in most covering (separate-and conquer) rule learning 

algorithms

(Greedily) find a subset B of 
all features F so that some 
quality function h is optimized

Covering: Repeat until all 
examples are covered by 
one (or more) rule
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Learning DNF Expressions

 successive refinement of individual rules (red)
 reductions in coverage space by removing covered examples 

(shades of grey)
 bulding up the DNF by adding one conjunct at a time (green)
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Heuristics: Precision

 basic idea:
 percentage of positive 

examples among covered 
examples

 effects:
 rotation around origin 

(0,0)
 all rules with same angle 

equivalent
 in particular, all rules on 

P/N axes are equivalent 

 typically overfits

hPrec( p ,n)=
p
p+n
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Heuristics: m-Estimate

 basic idea: 
initialize the counts with m 
examples in total, distributed 
according to the prior 
distribution P/(P+N) of p and n.

 effects:
 origin shifts to 

(-mP/(P+N),-mN/(P+N))
 with increasing m, the lines 

become more and more 
parallel

 can be re-interpreted as a 
trade-off between WRA and 
precision/confidence

hm( p ,n)=
p+m P

P+N

( p+m P
P+N

)+(n+m N
P+N

)
=
p+m P

P+N
p+n+m
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Discriminative Rules

 Allow to quickly discriminate an object of one category from 
objects of other categories

 Typically a few properties suffice 

Example:
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Characteristic Rules

 Allow to characterize an object of a category
 Focus is on all properties that are representative for objects of 

that category

Example:

Note: Characteristic rules
tend to be more complex

Note: Characteristic rules
tend to be more complex
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Discriminative Rules vs. Characteristic Rules

Michalski (1983) discerns two kinds of classification rules:

 Discriminative Rules:
 A way to distinguish the given class from other classes

 Most interesting are minimal discriminative rules.

 Characteristic Rules:
 A conjunction of all properties that are common to all objects in the 

class

 Most interesting are maximal characteristic rules.

   Features → Class

    Class → Features
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Characteristic Rules

 An alternative view of characteristic rules is to invert the 
implication sign

 All properties that are implied by the category 

Example:
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Inverted Coverage Spaces

 Regular rule learning heuristics 
quickly exclude negative examples
 e.g., precision: 
 is maximal if no negative examples are covered 

(regardless of the number of positive examples)

 Inverted heuristics instead maintain 
a high coverage of positive examples
 e.g., inverted precision
 is maximal if all positive examples are covered 

(regardless of the number of negative examples)

 General approach: 
 swap the role of positive and negative examples
 negate all the inputs
 i.e., learn conjunctions of negated features that predict the negative class

h( p ,n)= p
p+n

ɥ( p ,n)= N−n
(P−p)+(N−n)

This is similar to 
inverting the implication
→ characteristic rules

This is similar to 
inverting the implication
→ characteristic rules

(Stecher, Janssen,  Fürnkranz 2014)
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Empirical Results:
Inverted heuristics tend to work better



J. Fürnkranz 27 J. Fürnkranz  |  V1.0

Inverted Heuristics – Rule Length

 Inverted Heuristics tend to learn longer rules
 If there are conditions that can be added without decreasing coverage 

on the positive examples, inverted heuristics will add them first 
(before adding discriminative conditions)
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Example Rules – Mushroom dataset

 The best three rules learned with conventional heuristics

 The best three rules learned with 

poisonous :- odor = foul.          (2160,0) 
poisonous :- gill-color = buff.    (1152,0) 
poisonous :- odor = pungent.        (256,0) 

poisonous :- veil-color = white, gill-spacing = close,
             no bruises, ring-number = one, 
             stalk-surface-above-ring = silky.  (2192,0)
poisonous :- veil-color = white, gill-spacing = close,
             gill-size = narrow, population = several,    
             stalk-shape = tapering.             (864,0)
poisonous :- stalk-color-below-ring = white, 
             ring-type = pendant, ring-number = one,
             stalk-color-above-ring = white, 
             cap-surface = smooth, stalk-root = bulbuous,
             gill-spacing = close.               (336,0)
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Example Rules – 
Coronary Heart Disease

Longer rules with higher coverage (compared to h
Lap

)

(Stecher, Janssen,  Fürnkranz 2016)



J. Fürnkranz 30 J. Fürnkranz  |  V1.0

Example Rules – Brain Ischemia

Regular heuristics find Barthel index and fibrinogen 
value as relevant  for a brain stroke.

Inverted heuristics in addition refer to
age, diastolic blood pressure, and cholesterol
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Learning Disjunctive Rules

 Disjunctive rules can be learned analogously to conjunctive ones
 when these are combined conjunctively, it effective learns a CNF 

definition for the concept

 Learning a disjunctive single rule in coverage space:
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The Duality of Conjunctive and 
Disjunctive Learning

 By Boolean Algebra, disjunctive rules can be learned as 
conjunctions

disjunctive learning of a disjunctive rule conjunctive learning of a disjunctive rule
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The Duality of Conjunctive and 
Disjunctive Learning

 Analogously conjunctive rules can be learned as disjunctions

disjunctive learning of a conjunctive ruleconjunctive learning of a conjunctive rule
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Learning DNFs and CNFs

 DNF: disjunctively combining conjunctive rule bodies
 often learned via covering on the positives, 
 i.e., conjunctive rules that cover 
 some examples of the class to learn 
 (almost) no examples of the other classes

 are successively added to the rule set until all examples of the class 
to learn are covered

 CNF: conjunctively combining disjunctive rule bodies
 can also be learned via excluding on the negatives
 i.e., disjunctive rules that exclude
 some examples of the other classes
 (almost) no examples of the class to learn

 are successively added to the rule set until no examples of other 
classes are covered
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Inversion of Biases

 Note that while the learned DNF and CNF expressions are 
equivalent w.r.t. the training examples, they are not equivalent 
w.r.t. unseen examples

 in fact, the learning biases will be inverted as well!
 if the conjunctive learner has a bias towards learning very specific 

concepts, it will also learn a very specific description for the negated 
class

 inverting this results in a very general description for the positive class 

 Explains previous results on learning with inverted heuristics:
 using inverted heuristics results in longer rules with higher coverage
 because more general conditions are selected
 the focus for condition selection is maintaining a good coverage of positives, 

not on quickly excluding many negatives
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NegLORD

 Learn CNF descriptions using LORD as a DNF learner
 Generally works well (albeit no miracles) 

 

 some datasets seem to be better learnable with CNF, others with DNF
 more or less confirming the results of previous works

 A few caveats:
 Efficiency: 
 data structures of LORD are optimized for sparse data
 negated features are dense → NegLORD is considerably slower 

 Multi-class:
 we have to learn descriptions for every negated class
 negated classes have more examples than non-negated classes
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Limitations of Uni-Directional Refinements

→ The regions in coverage space that can be reached with 
     successive (conjunctive or disjunctive) refinements are limited
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Bi-Directional Refinements

 This can be overcome with by allowing successive alternations of 
conjunctions and disjunctions
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Bi-Directional Refinements

 ...which essentially corresponds to multiple alternating AND/OR 
layers
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Learning Mixed Conjunctive 
and Disjunctive Rules

 LORD: A (powerful) conventional rule learner (i.e., DNF learner)
 NegLORD: Learn a CNF by inverting the problem to learn a DNF on the 

negated classes and negated inputs
 CORD: Allow a combination of conjunctive and disjunctive layers to 

potentially learn the best of both worlds

(Beck, Fürnkranz, Huynh 2023)
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Results

 As known from previous works, some concepts can be better 
learned in CNF, some in DNF

 CORD is in most (but not all) cases better than either
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Going Deeper

 CORD has 3 layers by default (disj./conj./disj.)
 More layers could be added with the same setup
 Results show modest but not consistent improvements for 

carefully tuned networks
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Analysis of Deeper Networks

 positive and negative correlation of various properties in the 
conjunctive and disjunctive layers of 5-layer networks with overall 
accuracy 

 
 
 
 

 e.g., higher values of the m-parameter (yielding more general rules) 
are good in early layers, wheras lower values are better in later layers

 accuracy increases in later layers
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Flat Rule Learning

 Flat Rule Sets can be converted into a network using a single 
AND and a single OR layer (→ a DNF expression) 
 
 
 
 
 
 
 
 
 

 Each node in the hidden layer corresponds to one rule
 typically it is a local pattern, covering part of the target
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Deep Rule Learning

 Deep Rule Networks with alternating AND and OR layers 
corresponds to multiple rule layers
 each conjunctive node corresponds to one rule
 each disjunctive node corresponds to a rule set

Negated Normal Form (NNF) Deep Rule Representation

Flat Rule Representation (DNF)
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General Approach

 Provide a fully connected network structure
 find binary weights for the edges

• 7 input features
• 2 hidden layers of size 6

→ 7×6+6×6+6×1=84 weights

• 7 input features
• 2 hidden layers of size 6

→ 

• we also need to store and
   propagate the activation
   of each node for each 
   training example

→ (7+6+6+1)×N variables
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Simple Greedy Local Search

 Find the weights using a simple optimization algorithm to learn 
both, deep and shallow representations
1) Fix a network architecture

● Shallow, single layer network RNC: [20]
● Deep 3-layer network DRNC(3): [32, 8, 2]
● Deep 5-layer network DRNC(5): [32, 16, 8, 4, 2]

2) Initialize Boolean weights probabilistically

3) Use stochastic local search to find best weight „flip“ on a mini-batch 
  of data until convergence

4) Optimize finally on whole training set

Main goal: See if deep structure can be useful

(Beck & Fürnkranz 2020)
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Results on Artificial Datasets

 20 artificial datasets with 10 Boolean inputs, 1 Boolean output 
 generated from a randomly initialized (deep) Boolean network

 DRNC(3) [DRNC(5)] outperforms RNC on a significance level of 
more than 95% [90%]
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Learning Curves (Artificial Datasets)

 
 

 DRNC(3) and DRNC(5) converge faster than RN
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Results on Real-World (UCI) Datasets

 

 DRNC(5) has the best performance on these real-world datasets, 
followed by DRNC(3)

(Beck & Fürnkranz 2021)
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Optimization Using SAT
(Seip et al. 2025)
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Results

 Optimization works well
 SAT trained outperform greedily trained networks
 as well as Ripper and CART

 but deep structures do not seem to be helpful
 because flat networks have fewer parameters?

 … and scalability is a huge problem
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Various Ideas for Speed-Up

 incremental freezing of weights via mini-batch optimization
 find optimal weight settings for various small mini-batches
 combine then so that successively stable hidden concepts emerge 

 use feedback from the SAT solver to recognize potentially noisy 
examples and remove them 

 use LORD to focus on relevant features
 each example can be represented by the rule LORD generates
 may also help to cope with noise

 pre-training using flat Boolean auto-encoders
 in case these are feasible...
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Further Ideas to Explore

 Joint learning of multiple outputs with the 
same network
 rule learning algorithms learn each output 

independently
 joint optimization should yield smaller formulas
 even for flat rule sets 

 Boolean auto-encoders
 compressing Boolean data by learning a 

function that can reconstruct the data from 
fewer variables (→ embedding)

 layer-wise pre-training with auto-encoders 
was one of the first successful deep learning 
approaches
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Conclusions

 Learning more complex rule sets
 Locally optimal rule induction (LORD)
 Learns one rule per example (in analogy to XAI approaches)

 Learning more complex rules
 Characteristic Rules vs. Discriminative Rules
 Related to learning disjunctive vs. conjunctive concepts 

 Learning deeper rule sets
 greedy training is possible but not very effective
 SAT-based optimization is better but quite inefficient

 Main bottleneck is scalability
 Various ideas for improvements currently under investigation
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