Towards end-to-end ASP computation*

Katsumi Inoue
National Institute of Informatics

TAASP 2025 (TU Wien Informatics, November 25, 2025)

* Joint work with Taisuke Sato and Akihiro Takemura
(to appear in Neurosymbolic Artificial Intelligence)

Outline

1
7.
3.
4. Supplementary: Tools for Differentiable ASP (unpublished)

ntroduction: Towards Trustworthy Al
Background: Algebraic Approaches to Logic Programming
Main: A Framework for Differentiable ASP

Towards Robust Symbolic Reasoning

* Symbolic reasoning has been used
 to derive logical consequences of knowledge bases (represented in logical formulas);
* to compute satisfiable assignments of specifications (represented as constraints).

* Symbolic reasoning ensures the correctness of computation in terms of consistency,
soundness and completeness, supposing that given knowledge and input data are correct.

* Symbolic reasoning is explainable and interpretable, which gives a foundation of XAl.

Logical knowledge and derived theorems can be stored and reused.

The bottleneck exists in obtaining correct knowledge.

Reasoning algorithms lack scalability and are not tolerant to noise.

We often need huge commonsense as background knowledge.

:> These weakness could be covered by combining with Machine Learning methods.

Integrating KR and ML for Trustworthy AI

Symbolic/Discrete Space
*Knowledge Representatlon

* |nterpretability

 Explainability

eurosymbolic Al

Bridging Two Spaces
»Linear-algebraic logic programming Numeric/COntinUOUS Space
»Differentiable logic reasoning and learning ’ _
“*Incorporating constraints into ML systems **Machine Learning (|V||.)
Applications * Robustness
*Object detection * Scalability
**VQA, NLI, Robotics High-speed algebraic computation on GPUs

*»*Biology, Physics, etc.

Discrete/Symbolic 2 Continuous/Numeric

 Domains: Boolean, multi-valued/discrete, continuous
e Constraint types: logical, Pseudo-Boolean, linear, non-linear, differential

e Spectrum of search algorithms:
e Complete: systematic, DPLL, CDCL
 Local search (grid search): greedy, mixed random walk
* Large neighborhood search (LNS): several neighborhood definitions
e Continuous search: cost-minimization, differentiable

 Varieties of optimization methods:
e Combinatorial: intractable, greedy randomized
* Continuous: iterative, gradient, Newton
* Cross-entropy, Evolutional, Quantum, etc.

* Multi-variate time-series data as input
* Multiple variables can be handled simultaneously: Array computing
* Applications to many areas, e.g., XAl, Edge Al, CPS, biology

Neuro(-)symbolic Al (NeSy)

* The popularity of neuro-symbolic approaches has been on the rise in
recent years, e.g., Artur Garcez et al. (2019); Gary Marcus (2022).

* The goal is to integrate “the two most fundamental aspects of intelligent
cognitive behavior” (Leslie Valiant, 2003):
* the ability to learn from experience, and
* the ability to reason from what has been learned.

* Analogies have also been drawn with dual process theories in psychology
(Daniel Kahneman, 2011; Francesca Rossi, 2022).

System 1 (Neural / reflexive) < | System 2 (Symbolic / deliberative)

Neurosymbolic reasoning and learning

e Explainable models for black-box learning systems
* symbolic rule extraction from neural networks
e construction of logic circuits that simulate machine learning systems

* Hybrid systems (popular in NeSy)
* neural pattern recognition followed by symbolic problem solving
* verification of machine learning outputs by symbolic reasoning
* neural pattern recognition enhanced/constrained with symbolic reasoning

* Embedding symbolic knowledge in vector spaces
* knowledge graph embedding
* program syntheses, neural/differentiable programming

* neuro-symbolic reasoning: theorem proving, logic programming, answer
set programming, abduction, etc.

* large language models

https://waymo.com/open/

https://waymo.com/open/

e R
3 e -
===
o Stag

Khan et al., https://doi.org/10.48550/arXiv.2411.01683

https://doi.org/10.48550/arXiv.2411.01683

* Multi-label Object Recognition
* Agent detection

(Pedestrian, Car, Cyclist, Emergency-Vehicle etc.) 841 | P IR
* Action detection i1, Iels e % T
(Turning-right, Moving-away, Pushing-objects, etc.) 7%) 1
* Location detection

(Vehicle-lane, Right-pavement, Bus-stop, etc.)

* Requirements (= hard logical constraints)!!
* A traffic light cannot move.
* A traffic light cannot be red and green at the same time.
* [fan agent is crossing, it is either a pedestrian or a cyclist.

https://sites.google.com/view/road-r/dataset

 Methods: Extend pre-trained recognition model, use Partial Weighted MaxSAT

 ROAD-R Challenge for NeurlPS 2023:
* NIl Team Results!2l: Task 2 (supervised) Won, Task 1 (semi-supervised) 3rd

[1] Eleonora Giunchiglia, et al.: ROAD-R: the autonomous driving dataset with logical requirements. Machine Learning, 112 (2022)
[2] S. Moriyama, K. Watanabe, K. Inoue, A. Takemura: MOD-CL: Multi-label Object Detection with Constrained Loss. arXiv (2024)

https://sites.google.com/view/road-r/dataset
https://sites.google.com/view/road-r/dataset
https://sites.google.com/view/road-r/dataset

Logical Constraints in ROAD-R (all hard constraints)

Requirements

Natural Language Explanations

{Ped, not PushObj }

{PushObyj, not Ped, MovAway, MovTow, Mov, Stop, TurLft, TurRht, Wait2X, XingFmLft, XingFmRht, Xing}
{Ped, not XingFmLft, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}

{Ped, not Wait2X, Cyc}
{Ped, not Stop, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}
{Ped, not Mov, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}

{Ped, not MovTow, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}
{Ped, not MovAway, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}
{Ovtak, not EmVeh, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFml ft, Xing}

{EmVeh, not HazLit, Car, MedVeh, LarVeh, Bus, Mobike }

{Ovtak, not Bus, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFml ft, Xing}
{Ovtak, not MedVeh, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}
{Ovtak, not LarVeh, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}

{OthTL, not Green, TL}
{OthTL, not Amber, TL}
{OthTL, not Red, TL}

{Ovtak, not Mobike, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}
{Xing, not Cyc, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, TurLft, TurRht, Ovtak, Wait2X, XingFmLft, XingFmRht}

{Cyc, not Ovtak, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}
{Cyc, not IncatRht, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}
{Cyc, not IncatLeft, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}
{Cyc, not Brake, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}

{Ovtak, not Car, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}

{Car, not TurRht, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}
{Car, not TurLft, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}

{VehLane, OutgoLane, OutgoCycLane, IncomLane, IncomCycLane, Pav, LftPav, RhtPav, Jun, XingLoc, BusStop, Parking, TL, OthTL}

{Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, TL, OthTL}

Challenges:

If an agent pushes an object then it is a pedestrian

A pedestrian can only push objects, move away, etc.

Only pedestrains, cars, cyclists, etc. can cross from left

Only pedestrians and cyclists can wait to cross

Only pedestrians, cars, cyclists, etc can stop

Only pedestrians, cars, cyclists, etc can move

Only pedestrians, cars, cyclists, etc can move towards

Only pedestrians, cars, cyclists, etc can move away

An emergency vehicle can only overtake, move away etc.

Only emergency vehicles, cars etc. can have hazards lights on

A bus can only overtake, move away move towards etc.

A medium vehicle can only overtake, move away, move towards etc.
A large vehicle can only overtake, move away, move towards etc.
Only traffic lights and other traffic lights can give a green signal
Only traffic lights and other traffic lights can give an amber signal
Only traffic lights and other traffic lights can give a red signal

A motorbike can only overtake, move away, move towards etc.

A cyclist can only cross, move away, move towards etc.

Only cyclists, medium vehicles, large vehicles etc. can overtake
Only cyclists, medium vehicles, large vehicles etc. can indicate right
Only cyclists, medium vehicles, large vehicles etc. can indicate left
Only cyclists, medium vehicles, large vehicles etc. can brake

A car can only overtake, move away, move towards etc.

Only cyclists, medium vehicles, large vehicles etc. can turn right
Only cyclists, medium vehicles, large vehicles etc. can turn left
Every agent but traffic lights must have a position

There must be at least an agent

1. Can these constraints help learning with small amount of training data?
2. How can hard constraints be 100% satisfied using neurosymbolic methods?

Adaptive Object Detection for ROAD-R/Waymo
(T. Eiter, N. Higuera, K. Inoue, S. Moriyama, NeurlPS 2025)

Combined
Loss

f

Neural Loss

Constrained Loss

T-norm choice A choice

Model T Static Static

t-norm A

M ODYOLO_' Predictions ——F—— | Average

Violation

Adaptive A
t-norm Scheduler

T-norm Set

Constraints Set

L= Lneural +)L) Lconstrained

* extends MOD-CL, the winning model of ROAD-R Challenge for NeurlPS 2023

* seamless integration of the constrained loss into object detection models
 adaptive selection of 12 t-norms of fuzzy logic in evaluating constrained loss

* dynamic change of A (constraint satisfaction degree) by regularization scheduling

, 1= 100)

Outline

1. Introduction: Towards Trustworthy Al

2. Algebraic Approaches to Logic Programming
3.

4. Tools for Differentiable ASP (unpublished)

A Framework for Differentiable ASP

Algebraic approach to logic programming

* Linear algebraic approaches to logic programming contribute to a step toward realizing
robust and scalable logical inference.

1. Matrix-vector product methods are used for exact computation, which can be
scalable, and are the basis for the differentiable method.

2. Differentiable methods are used for approximate computation, which can be
robust to noise, and are connected to machine learning.

* Machine learning of logic programs can be realized by computing matrix/tensor
representation of programs from input-output pairs.

Logical inference in vector spaces, |
—Linear-algebraic methods (sakama, inoue & sato, 2021)

e Common Principle:
* Representation (encoding): formulate logical formulas as vectors/matrices/tensors
Computation: apply linear algebraic operations on these elements

P: (logic) program, constraints = matrix M,

| : assignment/interpretation = vector v,

J=To()={h| (h<&b;&.&b,)EP {by,..,b, }=/}: immediate consequences

= vector v, = BM,v,), where 8 is a binary threshold function

* Expected:
* High performance computation based on the sparsity of matrices (Nguyen, Inoue & Sakama, 2022)
* Parallelism by GPU computation + partial evaluation (poss. exponential speedup)

» Chiaki Sakama, Katsumi Inoue, Taisuke Sato: “Logic programming in tensor spaces”, AMAI, 89:1133-1153 (2021).

Logical inference in vector spaces, |l
—Continuous/differentiable methods (Sato & Kojima 2019)

e Common Principle:
e Set a loss function L
* Formulate a problem as cost minimization of L with parameter tensor x
e Compute a minimum x of L by SGD/Newton’s method
. - . . dL(x)
e if L(x) =0, then xis a solution
 Threshold x to a binary tensor representing a logical solution 0x
Gradient of L(x)
* Expected:

* Robustness by continuity
 Scalability by multi-core/GPU parallelism
 Smoothness to combine with neural systems

» Sato T., Kojima R.: “Logical Inference as Cost Minimization in Vector Spaces”, IJCAI 2019 International Workshops,
LNAI 12158, pp.239-255 (2020).

Differentiable reasoning & learning in vector spaces

Program
p :- not q.
qg :- not p.
P
%
N\
N\

P q9 p
p (O 0 O
9 \0 0 1

Learning from Interpretation Transiti

Model (stable/supported)

Answer Set Programming ir} {a}
Stable model /supported model semantics M
7

Inference (forward) , 7

Application of T, operator based on /

(Sakama et al., KSEM 2017): »

(Aspis et al., KR 2020), X

(Takemura & Inoue, LPNMR 2022)

Model Vector

(LFIT)

@ ()

Learning programs

Learning Boolean Networks (Sato &
Kojima, KR 2021),
Differentiable LFIT (Gao et al., MLJ 2021)

Differentiable computation of supported models

1. Embed a logic program
P into a Program Matrix D

Program
p P -- P.
qg :- not p.

{p} and {q} are supported, but only {q} is stable
Program Matrix

P 9 p q
DP
¢ G oo

Interpretation vector

* 0 (o)

2. Define Loss function

w.r.t. continuous-valued
interpretation such that
Loss = 0 corresponds to
an intended model of P

Loss function Gradient of L(x)

3. Minimize the loss with

gradient descent, to reach

Takemura, A. & Inoue, K. (2022). Gradient-Based Supported Model Computation in Vector Spaces. LPNMR 2022.

Differentiable computation of stable models [this talk]

1. Embed a logic program
P into a Program Matrix D

Program
p P -- P.
qg :- not p.

{p} and {q} are supported, but only {q} is stable
Program Matrix

P q p q

P

D" p (1 0 0 0)
q 0O 01 O

Interpretation vector

x P

0 (o

2. Define Loss function

w.r.t. continuous-valued
interpretation such that
Loss = 0 corresponds to

models of P
dL(x)
L(x) I

Loss function Gradient of L(x)

Semantically inspired checks
v’ Supported model
v' Unfounded set

v’ Loop formulas

3. Minimize the loss with

gradient descent, to reach
stable models

» Sato, T., Takemura, A. & Inoue, K.: Towards end-to-end ASP computation, arXiv:2306.06821, 2023.

Loss function (is exactly O when x is a supported model)

* Given
e D”: program matrix, shape: [|Heads|, |Bp,|] #|Bp.| =2-|Heads|
 x: candidate interpretation vector, shape: [|Bp, |, 1]
* | |1x]||¢: Frobenius norm (2-norm)
* Fg thresholding function (parameterized G-thresholding)

1
L(x) = E{”FG (D"[x;1 —x]) — xlll% +\/11||x®(x - 1)||12:} + 22lf — (xONIIF}

|

1. [2. l 3. l

When mis a supported model, T,(m)=m Pruning fractional Penalty for

When this term is 0, we have FgD"x) = x interpretations ‘forgetting’ facts

(0 if all elements are 0 or 1) (O if assignments on
facts do not change)

Logical reasoning realized in vector spaces (in our group)

logic programming (LP) ASP (supported

first-order (FO) FO abduction (Sato, fixpoint computation 2 eELECEh for&LP mocgelsr))?Sato

deduction (Sato, TPLP Inoue & Sakama, (Sakama, Inoue & Sato, S(al\ll(ilrJTYaenl’Cllt\:;(e)Zl' Inoue & Sakam’a
2017) IJCAI 2018) KSEM 2017; AMAI NG& 2022) ’ ICAART 2020)

2021)

LP abduction (Nguyen, differentiable ASP differentiable ASP
Inoue & Sakama, ICTAI | (supported models) (stable models) SAT (MatSat) Boolean network
2021; PADL 2023; ICTAI (Takemura & Inoue, (Sato, Takemura & (Sato & Kojima learning (Sato &
2024) LPNMR 2022; ECAI Inoue, arXiv 2023; P0S 2021) Kojima, KR 2021)
2024) NSAI 2025)

differentiable LFIT differentiable LFIT et e ACellE differentiable rule

(transformer-based) (matrix learning) (Gao, Inoue, Cao & DNE learning{Sato learning from real-valued

(Phua & Inoue, ILP 2019; (Gao, Wang, Cao & [l Wang, 11CA12022; Al || & Inoue, MLJ 2023) time-series data (Gao,
ILP 2021, NeSy 2024) Inoue. MLJ 2022) 2024) |n0ue, CaO, Wang & Yang,

ICLR 2025)

Similarities between minimization tasks

I S N T

Matrix decomposition IX —AB|? q;ilzjc?c::’x
Relation abduction [Sato+ 2018] IR, — R3X||% 9;;;2?;:,)(
e) 2 0-1 vector
Satisfiability [Sato & Kojima 2018] 11 —t(Q [x1—xDll7 ‘assignment’
2 0-1 vector
Supported model [Takemura & Inoue 2022] lt(P[x; 1 — x]) — x| ‘interpretation’
Supported model 1t(DTE' (P[x; 1 — x]) — x]||2 0-1 vector

(N.B.: This term does not check for unfounded sets) ‘interpretation’

Sato, T., Inoue, K., & Sakama, C. (2018). Abducing Relations in Continuous Spaces. IJCAI 18 https://doi.org/10.24963/ijcai.2018/270
Sato, T., & Kojima, R. (2020). Logical Inference as Cost Minimization in Vector Spaces. IJCAl 19 Workshops https://doi.org/10.1007/978-3-030-56150-5 12
Takemura, A., & Inoue, K. (2022). Gradient-Based Supported Model Computation in Vector Spaces. LPNMR 2022.

https://doi.org/10.24963/ijcai.2018/270
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12

Differentiable rule induction from raw time series datal'!

0.8 — Positive
0.7 - Negative Patching
0.6 ISP
0] DRI
s AN Al
S 0.4
0.3 " Emm)| subsquences S
0.2 of a series X
0.1
Q <’) _Q 4\<_9 ﬁq>

Region 1 Region 2 Region 3 Region 4 Region 5

h, < pattern,(X) A region,(X) A pattern,(Y) A region,(Y) (p = 0.83, r = 0.89)

Dense
layer

0.8 — Positi\{e
Negative n
0 0.6
=
$0.4
0.2
0.0

Time points

Reconstructed
subquences S’

Predicted label

|
Encoder | Decoder
|
|
|
[0
£ Dense
Dense o) Dense
layer —> § = layer m) | layer | m)
&
L
Z
ifferentiable
k-means
o Extract
rn ©_ e [I
.‘. 0%, 2|V Deep[z:I =) Logic programs P
= | rule learning :
Predict
L module —>
3 0 o Iy
Shape as semantics Iv(ht)

Label of the series x

[1] K. Gao, K. Inoue, Y. Cao, H. Wang, F. Yang: ICLR 2025
[2] K. Gao, K. Inoue, Y. Cao, H. Wang: 1JCAI 2022, All 2024

Application viewpoints

We have shown that logical computation can be transformed to numeric
computation using algebraic representation.

The methods have some effects on purely symbolic domains, e.g., random
instances whose solving heuristics are not well-known.

But they are more effective on in uncertain environments, in which errors often
occur. Then we can construct robust reasoning systems.

Other expected domains exist on such interfaces between low-level perception
and high-level reasoning in neurosymbolic fields.

Loss functions for NeSy tasks with embedded logic programs

Implication

sum(@) :- observe(il,0,i2,0).
sum(1l) :- observe(il,0,i2,1).
sum(1l) :- observe(il,1,i2,0). ...

MNIST Predicted
addition digits

/ [
+ - Continuous
q IN

Logical Loss

=IL+CL
N/ -’
____________ mm—— -===7 Gradient
10 ”-Constraint Loss (BCE) .
1 Backpropagation
Constraints
:- sum(@), not observe(il,0,i2,0). el At inference time
:- sum(1l), not observe(il,0,i2,1), 1
not observe(il,1,i2,0). ... ouT g

» Akihiro Takemura, Katsumi Inoue: “Differentiable Logic Programming for Distant Supervision”, ECAl 2024.

Outline

1
2.
3.
4. Supplementary: Tools for Differentiable ASP (unpublished)

ntroduction: Towards Trustworthy Al
Background: Algebraic Approaches to Logic Programming
Main: A Framework for Differentiable ASP

Answer Set Programming (ASP)

A declarative approach to combinatorial problems

A problem is specified by a logic program P

A solution (answer set) is a set of ground atoms representing a stable model of P
There are many applications: planning, diagnosis, robotics, NLP, KG etc

Potassco project (https://potassco.org/) has been main driving force in developing
ASP systems

In neuro-symbolic Al, ASP has been used for symbolic representation and
reasoning

https://potassco.org/

Stable model computation

Stable model semantics [Gelfond & Lifschitz 1988]
— Smodels [Niemela & Simons 1997]: bottom-up backtracking search

SAT solver based

— ASSAT [Lin & Zhao 2004]: incremental loop formula test
— Cmodels [Lierler 2005]: disjunctive adaption of ASSAT

CDNL (conflict driven nogood learning)
— clasp [Gebser+ 2007]: generalization of CDCL

Neural combined approach

— OJASP/SAT [Nickles 2018]: ASP solver + decision literal by cost function

— NeurASP [Yang+ 2020]: ASP solver + (neural atoms + soft-max) + NN

— SLASH [Skryagin+ 2021]: similar to NeurASP + probabilistic circuit
Supported model computation by matrix encoding

— [Aspis+ 2020]: MD condition + cost function (quadratic polynomial, sigmoid)

— [Takemura & Inoue 2022]: SD condition + cost function (quadratic polynomial, ReLU-like)

No end-to-end approach to stable model computation exists

End-to-end ASP

We reformulate stable model computation for propositional normal logic programs in
vector spaces and compute stable models by minimizing a cost function

Unlike [Aspis+ 2020] and [Takemura & Inoue 2022], which compute supported models,
we compute stable models by

— incorporating constraints and loop formulas

— imposing no restriction on the syntactic form of programs such as the MD condition
[Sakama, Inoue & Sato 2017] and the SD condition [Sakama, Inoue & Sato 2021]

We compute a root u of a non-negative cost function L°¥ by Newton’s method
— [°v is derived from strong disjunction min(x+y,1) in tukasiewicz (real valued) logic:

= v (x D y)=min(1, v (x) + v (y)) = miny (v (x) + v (y))

Matricized program P =(C, D)

S qa- (b (@& V (~q&s)
— " g © ():empty body
o P- — ~q & s. = '
z a&s comp(P) =1 r & {}:empty disjunction
S < {} : empty disjunction
P g r s "pTq~rTs
010 0!/!l00 10 e p’s 15t rule has body q & ~r
0001/0100 e p’s 2" rule has body ~q & s
=lo 0 0 0ll0 0 O O * g’s 1°* rule has empty body (unit clause)
00O0O00O0O0O * r has norule
0 0 0 0[|]OO0OO0O * shasnorule
pp qrs
11 00 0 * p has two rules €(1,:) V €(2,:)
00 100 * g has one rule C(3,:)
00 00O * rhas norule
00 00 0 * s has no rule

Supported model

Given a normal logic program P = (C, D), compute P’s supported models
S in vector spaces

s is possibly a stable model of P

Put C = [CP%s C"¢9], where CP°s : positive part of C, €"¢9: negative part of C
Let s, be a binary vector as interpretation I for P

M =1 — min,(CP°5(1 —s,) + C"9s,) : truth value of rule bodies by s,

dS = min,(DM) : truth value of disjunctive rule bodies by s,
dS=s, iff s, isamodel of comp(P)

iff s, is a supported model of P

Cost function [°Y and its Jacobian J,>4

dS = min,(DM), M =1 — min,(C*%(1 — s;) + C"%9s,)
[5Y=(1/2)-11 dS — s, 12 +(1/2)- £,:l s, (1 —5)) I? (£,>0)
lLet E=dS —s, and F=5s,0(1 —s,). Then,
(54 = (1/2)-1| E 112 + (1/2)- £,-1| F II?
[>* =0 iff dS=s, and s,is binary
iff s,is a supported model of P =(C, D)
= (055 e (55)
= (CP — C"°9)T [N<1] O (D" ([(DM)<1]OE))) — E
+€,-((1—2-s,) ©F), where N=CrP (1 —s,) + €%,

Constraints and L€

C = [CP9> €€Y] represents a set of (integrity) constraints

— a & ~b.
E le: C=
xample: C {:_ b & ~c.
abc ~a~b~c
Z‘=[100 010 -a & ~b.
010 001 -b & ~c.

cPos gneg
[c=(1 e (1 —min(Ne, 1))) = |violated constraints|
where Ne=¢P% (1 — s)) + C"¢9 .s,= |false literals in constraint evaluation |

L¢=0 iff every conjunctin the body is evaluated false (constraint is satisfied)
J,c=(CP9° — "9 T[Ne < 1]

Computing supported models satisfying constraints

e Given a program P = (C, D) and constraints C, we compute supported models by
minimizing L>U*¢ = [>Y + £;-L¢ to zero
— >V =(1/2)]| miny(DM) — s, 11> 4+ (1/2): ,:l s, ©(1 —s,) [I> (£,>0)
— L°=(1 ¢ (1 — min(Nge1)))
e We use Newton’s method with Jacobian J >t = J 54 4 £5-J €
J>U = (CPos — C8)T[N<1] © (D" ([(D-M)<1]OE))) —E + £, (5;O(1 — 5)O(1 — 2- 5)))
Jc= (P9 — 9T [Ne< 1]

e For stable models, we compute supported models from random initialization until a
stable models is found

Minimization algorithm

e Input: metricized program P = (C, D), constraint matrix €
Output: binary vector s;” such that [5¥*¢(s,") = 0
e 1: initialize s, randomly
e 2:fori=1tomax_ try
forj=1to max_itr
threshold optimally s, to binary s,” and compute error = J5U*<(s;");
if (error = 0) break ;
compute L[SVt =[5Y 4 £o.[¢ and JpPute =)0 + P50
S;=8—Y (LSu+c/" -’LSU+C "22) -ILSU+C :
endfor
if (error = 0) break ;
perturbate s, ;
endfor

3-coloring of GO

e Consider a 3-coloring problem of graph GO:
Nodes ={a, b, c, d}, color = one-of(red, blue, green)
e Program P: one-of(al, a2, a3) .. one-of(d1, d2, d3)
al:-~a2,~a3. a2:-"~al,~a3. a3:-"al, ~a2.
bl :-~b2, “b3. b2:-~bl, ~b3. b3:-~bl, ~b2.

cl: ~c2,~c3. c2:-"~cl, ~c3. c3 :- ~cl, ~c2.
dl:-~d2, ~d3. d2:-~d1l,~d3. d3:-~di, ~d2.

5
e Constraints C (two nodes connected by an edge must have different colors)

:-al, bl. :-a2,b2. :-a3, b3. (by e;)
:-al,cl. :-a2,c2. :a3,c3. (by e5)
:-bl,cl. :-b2,c2. :-b3,c3. (by e53)
:-bl,dl. :-b2,d2. :-b3,d3. (by e,)
:-d1,cl. :-d2,c2. :-d3,c3. (by es)

u=[ala2a3 bl1b2b3 clc2c3 dld2d3]T
=[0 01 010 100000417

Matrix encoding

* Program P =(C, D) “a b cd~a~b~c~d
I a a H
| b b H 011
= = =101
o= et QM (
T d d H
every atom has a single rule ‘ v J1 . J
Cpos Ccneg
e Constraint C Computing performance
/ I 1 \ average over #solution
10 runs /10 trials
I I 100
C = O [| I = (g (1) 0} Su 6.7 (0.7) 5.2 (0.9)
1
o GLreduct 81(0.7) 4.7(0.7)
_ H
1 trial: max_try = 20, max_itr =50, £, =¥5;=0.1

N os ~ne Programs are run on a PC with Intel(R) Core(TM) i7-
cP ceg 10700@2.90GHz CPU with 26GB memory

Jsusc

3-coloring of cycle graph

Consider a 3-coloring problem of cycle graph:

Nodes ={1,..,n}, color = one-of(red, blue, green)
e 3natoms: D(3n x 3n), €(3n x 6n), €(3n x 6n)
#3-coloring_of cycle(n) =2" + 2-(—1)"

Convergence curve

25
n =10, max_retry=100,
max_itr=50
20
15 -
10 + solution found
by thresholding
5 -
0 S L T AR SRR
0 20 40 60 80 100
itr

time(s)

Scalability
400 T
—— time to find a solution
300
200
100
O L 1 1
2000 4000 6000

8000 10000
n

Hamiltonian cycle problem

e Hamiltonian cycle (HC): a round trip visiting every city once
e Two types of encoding possible
— non-tight normal logic program + constraint [Niemela 1999], [Lin+ 2003]

normal logic program + constraint (none?)
transformation to

e We modify the SAT encoding of HC by [Zhou 2020] inherently tight program

= 1: node j is in HC and visited at time q (1<i,q<K)
=1: edgei—jisin HC

(1) one-of(H(i,j;).-H(i,j)) : outgoing edges are exclusive (1<i<K)

(2) one-of(H(i,j).-H(ij)) : incoming edges are exclusive (1<i<K)

(3) H(1,j) = U(j,2) : redundant and removed

(4) H(i,1) = U(i,K) . if i—=1 exists, i is visited at time K (2<i< K)

(5) H(i,j) & U(i,g-1) = U(j,q) :ifi—j exists and node i is visited at time g-1,
node j is visited at time q (1<i,j<K, 2<g< K)

(6) one-of(U(i,1)..U(i,K)) : node i is visited exactly once (1<i<K)

(7) U(1,1) : node 1 is visited at time 1 (starting node)

Hamiltonian cycle problem (cont’d)

e We solve the HC problem for G1
e We introduce 72 atoms for H(i,j) and U(j,q) and
encode the HC problem as follows:

(1) one-of(H(i,j;)..H(i,jx)) tight program (D Q)
(4) H(i,j) & U(i,a-1) = U(j,q) - Q197 x 144)
(7) U(1,1) D(72 x 197)

(2) one-of(H(iy,j)..H(i,) constraint (£5 -10)

5) H(i,1) = U(i,K — from A User's Guide to gringo, clasp,
26; or(le—Z)f(U(i(l).?U(i K)) Qc(66 X 144) clingo, and iclingo ver.3, 2010

- There are five HCs:
H(1,2) :- ~“H(1,3) & ~H(1,4). 1->2->6->3->5->4->1
U(2,4) :- (U(1,3) & H(1,2)) v --- v (U(6,3) & H(6,2)). 1->2->6->5->3->4->1

Average time to find a HC over 10 trials (octave on PC: 2.90 GHz 32GB) 1 > Z > 2 > g > é > g > 1
>4->2->5->6->3->
& | 002 | 005 | 01 | 015 | 02 [EESEONCSOIGHGNEH

time(s) 5.2(6.6) 4.5(4.4) 5.1(4.3) 8.2(8.6) 6.2(7.0)

Loop formulas LF

e \We can compute solely s,of a program P by matricizing the Lin-Zhao
theorem [Lin and Zhao 2004]:

s, is a stable model of P iff s, E comp(P) and
e Loop formulas LF:

— Loop S ={py,...,p} : atoms such that there is a path from p;to p;and vice versa in
the positive dependency graph of P; p has a self-loop when S = {p}

— Body(p) =G,V -V G; where rule (p :- G) € P and
G;* (positive literals of G;, possibly empty) NS=0 (1< i <j)
when no such G; exists, Body(p) is false
— LFoR(S) : OR-type loop formula associated with S
=(pyV +++ V py) = (Body(p,) V --+ V Body(py))
— LF : the set of all loop formulas for P = { LF,x(S) | Sisaloopin P}
e [Fsays every loop has an exit that calls atoms outside the loop

AND-type loop formula

e OR-type Loop formulas in the Lin-Zhao theorem [Li and Zhao 2004] can be
replaced by AND-type ones [Ferraris, Lee & Lifschitz 2006]:

LFanp(L) = () = (Body(p,) V -*- V Body(py))

=(¥py V-V ~py) v (Body(p,) V -+- V Body(py))
LF ={LF,p(S) | Sisaloopin P}

e To reduce the computational difficulty (complete digraph has 2"-1 loops),
we heuristically choose a subclass of loops

/\< ‘L\ 4C + -+ ,Cy=2%—1loops
_/()\/ 4C1 =4 minimal loops

Matricizing s, & LF by L' =0

e LetS={py,.. P beav-thloop in the positive dependency graph of P = (C, D),
LFanp(S) = (P1&-+-& p)—(Body(p,) V --+ V Body(py))

e Introduce a non-negative function L*" of s, by

— LF=F" (1—min(A(v), 1))

— A(v)=5(v,:): (1 —5,) +S(v,) E(v)M (1 <v<w):s ELF(S(v,:))

s E ~(p1& - & pk) P1 Pk

— S(v, :) : v-th loop {py,..,p}=10..1..1..0] G; G

— E(v)(p, :) ={Gy,...,G;}, where Body(p) =G, V-V G;= [0..1..1..0]

— M=1—min(CP°5(1 — s,) + C"®%s,), where C = [CP%° C"¢9] (M is the truth values of rule bodies C)
e We can prove for a binary s,

iff A(v) = 1for Vv iff s, = LF\\p(S) for V loop S iff

e J'F =0LY/0s,

= zﬁ; [A(v) < 1] - ([N(v) < 1] (S(v, :)T) + ((S(v, :) E(v))'OIN=<1])(C"9—C"**)))")

where N(v) = S(v, :)- s, and N=CPs(1-5s,) + C"%9s,

s, = Body(p;) V --- V Body(pk)

Three LF heuristics

e There are exponentially many loop formulas LF
— elementary loops [Gebser+ 05], proper loops [Ji+ 14] introduced
e To guide minimization, we use a subset of LF associated with
— maximal loops: LF_max (= SCCs, self-loop must for singleton SCC {a})
— minimal loops: LF_min (= cycles, elementary loops)
— LF_min but with external supports for LF_max: LF_ min_max

or may exclude some supported
models but never stable ones

e Uk LF. min_max implies uELF, soukE
is a sufficient condition for stable model u

Loopy program P1

o See differences between three heuristics

Program P1.:
@ @ a0 :-al1 & a2 & a3 & a4.
\ / al:-a0V a2.
H @ ” —a2:-a0Vval.
@/ \@ a3 :-al0V a4.
a4 :- a0V a3.

supported models ={{}, {al,a2}, {a3,a4}, {a0,al,a2,a3,ad4}} (242-1)+1 models
\

stable models={ @ }

e Loop formulas exclude some supported models

LF max={a0&al &a2&a3&ad— 1} {a0, al, a2, a3, a4}
LF_min={a0 & al—a2, a0 & a2—al, a0 & a3—a4,
a0 & a4—a3, al & a2—a0, a3 & a4—a0 } {al, a2}, {a3, a4}

LF_min_max={a0 &al—1,a0 &a2—1,a0 &a3—1,
a0 & a4—1,al &a2—1,a3 &ad—1} {al,a2}, {a3,a4}, {a0,al,a2,a3,a4}

Loopy program P2

e See differences between three heuristics Program P2:
- a0:-al&a2&a3&a4.
@ @ al:-a0V a2.
a2 :-al0V al.
H\ /H @ ~ a3:-a0Vad
/ X a4 :-al0 Vv a3.
@ 4 \@ a5 :- ab.
a0 :- ~ab5.

—

24/2+1 = 5 supported models, 1 stable model = {a0,al,a2,a3,a4}

e Loop formulas exclude some supported models

LF max={a0&al&a2&a3&ad—>1,a5—->1} all except {a0..a4}
LF_min ={a0 &al — a2, a0 & a2 — al, a0 & a3 — a4,
a0 & a4 —» a3,al &a2 —> a0,a3&a4 —a0,a5—> 1} all except {a0..a4}

LF_ min_max={a0&al—1,a0&a2—1,a0&a3 -1,
a0&a4—> 1,al&a2—>1,a3&a4—>1,a5-> 1} all supported models

Loopy program P2 (cont’d)

e The effect of loop formula heuristics

Average time and trials to find a stable model over 10 runs

#supported #stable
model model

no LF 0.16
LF_max 4.1 1 1 1
LF min 2.2 1 1 1
- - stable model
LF_min_max tiemout 5 0 0 excluded

* max_retry 20, max_itr =50

1 trial = (max_retry X max_itr) computation
* 1 run =5 trials

* time = time for 10 runs

* timeout = 240s

Loopy program P2 (cont’d 2)

e Another solution constraint:
when a model {a,b} is found, add (:- a&b.) to constrain for next solution

Average time and trials to find a stable model

another solution
constraint

not used 11.46 10 000 no stable model found
due to learning bias

used 0.09 3.5

no_LF used (purely supported model computation)
max_retry = 20, max_itr =50

1 trial = (max_retry X max_itr) updates

1 run = 10,000 trials

* time = average of 10 runs

e Useful and necessary for multiple solutions

Loopy program P2_n

e Generalizing P2 to P2_n (n: even)

- a(0) :-a(1) & -+ & a(n).

a.(2i-1) .- a(0) v a(2i). for i=1..n/2
= a(2i) :-a(0) v a(2i-1). for i=1..n/2

a.(n+1) - a(n+1).
_a(0) :- ~a(n+1).

e Loop formulas
— 2"2+1 supported models, one stable model M, = {a(0),...,a(n)}
— LF_max={a(0) & a(l) &--& a(n) - ~a(n+1), a(n+1) —» L } allows M,
— LF_min={a(l) & a(2) — a(0), a(3) & a(4) — a(0),..., a(n+1) = L } allows M,

Loopy program P2_n (cont’d)

Scalability wrt n: time to find one stable model (left) and the total
number of supported models found (right)

scalability | computed supported models|

30

-A— no_LF 14 & no_LF
—6— LF_max 3 —6— LF_max

%— LF_min i *— LF_min
25 /

— —
3 e A

10 20 30 40 50 0=

n n "

max_try = 10, max_itr = 100, max_fp = 2"/2+1
no_LF is much faster than LF_max, LF_min (left)

no_LF computes non-stable models, but LF_{max, min} don’t (right)

More natural program: transitive closure

e Compute the Ifp of comp(P,,)

p = { tr(X, Z) :- tr(X, Y) & tr(Y, Z).
T Ltr(a, 2). tr(2,3). tr(2, 4). tr(3, 4).

— grounding P,, generates 64 rules in 16 atoms
— matrix encoding gives (C(16x64) D(64x128))

P,. has > 34 supported models
— pruning by LF_max leaves just one stable model

Time to find a stable model . :
Adjacency matrix

—m of transitive closure

no_LF 0111
LF_max 63.4 0011

. 0 001
max_retry = 10, max_itr = 100 L0 0 0 O-

LF_min takes too long

Domain ={1,2,3,4}

LF_max works but
takes long time

Precomputation (1)

For a normal logic program P={a:-B&N. }, putP*={a:-B. }

Let PY be the GL reduct of P by a stable model s,

— PY C P, so Ifp(PY) € Ifp(P*), hence every atom outside P* is false in any stable model
Precomputation: partial evaluation by false atoms

— compute F,= HB\Ifp(P*) in O(|P|), where |P]| is the total number of atom
occurrences in P [Dowling+ 84]

— G’ = conjunction G with{—a € G | a € F, } removed

— P ={(a<G)|(a<G)EP, a&F, GrNF, =0}

-~ C'={(«<G)|(«<G)EC, G'NF,=0}

s, is a stable model of P satisfying constraints C

iff s,”a stable model of P’ satisfying constraints C’, wheres,=s,”+{a € Fyis falsein s, }

Precomputation (2)

e The effect of precomputation on the HC problem example
— |HB| =72, |Fp| =32, so 32 atoms are detected as false, 40 atoms need to be decided

G1

Time to find one stable model

— apecoms. | preom.

time(s) 2.08(2.01) 0.66(0.52)
matrix D: 72 x 197 D’: 40 x 90
size C: 194 x 144 C’: 90 x 80

C. 67x144 C”: 52 x 80
max_try = 20, max_itr=200, [,=15=0.1 from A.User > Gu.ld.e to gringo’,

. clasp, clingo, and iclingo ver.3, 2010
average of 10 trials

time(s)

Precomputation (3)

e P2 n:n+2atoms
[a,:- 3, & &a,.
a]_ - aovaz. az - aoval.

dn+1 +7 Anel

ag -

Nan+1'

—

— 2"2+1 supported models, 1 stable

Time to find a stable model

20

*— LF_min
—6— LF_max
—A—no_LF

no_LF_pre

. an_l :‘ ao V an. an :'

apVa, .

model {a,,a;..a,} (only a,,, is false)

#computed supported models in 10 trials

7

*— LF_min
—6— LF_max

- —A—no_LF

no_LF_pre

e (&
T

w
T

#supported model

1
20 40 50

Precomputation (4)

e P2 n+k:n+k+2 atoms

ap:i- a, & - &a, ap:
a]_:' aovaz.
An+1+7 Ansge -

- any &t & YA
a,:- agVay. .. anq:- agVa,.

an:' ao V an_l.
+ Anak T Anake

— (27/2-1)(2%-1)+1 supported models, 1 stable model {ay,a;..a,}

m i

Time to find one stable model
0.05 T !

—6&— precomp

—A— Clingo

0.04

(F>)/IHB| = 5000/10001 when n = k = 5000
pre-computation time = 0.000005s

0.03 -

time(s)

matrix
size

0.02 -

C: 10001 x 15002 C’: 5001 x 10002
D: 15002 x 20002 D’: 10002 x 10002

0.01

0
1000

In a very special case, no parameter update

required and our approach comes close to
clingo (even by octave implementation)

3{?3? 4000

2000

5000
max_try=10, max_itr=100, [, = [; = 0.1, average of 10 trials

Summary

Supported models for a propositional normal logic program P with constraints are
computed in vector spaces for the 3-color problem and the Hamiltonian cycle problem

Stable models of P are computed based on the Lin-Zhao theorem by computing
supported models of P that satisfy AND-type loop formulas

We proposed three heuristics for loop formulas to avoid computing non-stable models:
— LF_max by maximal loops (SCCs)

— LF_min by minimal loops (cycles)

— LF_min_max by merging LF_max and LF_min

We also proposed precomputation to reduce program size

We empirically confirmed the effect of these by simple experiments
This is an initial study of differentiable ASP using matrix encodings
More elaboration is expected

Outline

1
2.
3.
4. Supplementary: Tools for Differentiable ASP (unpublished)

ntroduction: Towards Trustworthy Al
Background: Algebraic Approaches to Logic Programming
Main: A Framework for Differentiable ASP

Outline of Differentiable ASP solver

* Differentiable solver for stable model semantics
* Incomplete, approximate solver

Parse the normal logic program P
Append “loop formula constraints” LF to P
Embed P + LF into matrix

Using a differentiable loss function,
update the interpretation vector with gradient information

B w N

Building blocks: Matrices and Vectors (1/2)

Program

p -notr »

r

- T,

C: Program Matrix

o O o0f|jo O 1
1 0 00 0 O
o o 1o o o

1

| plalrlplalr
o 1 o)(0 0 o

D: Head Matrix

1
0
0

0

1

0

0

0

1

f': fact vector; 1 if P has facts

nn

0 0 0

xT: Interpretation vector
aelifl

C’: positive part nn

CN: negative part

1 1 0

[x; 1-x]T: Companion vector
(for multiplying with Q)

EEIEEIERES
1 1 0 0 0 1

Building blocks: Differentiable Thresholding (2/2)

* Parameterized thresholding
* @ :(n,1)-vector, n=number of rules
* @ : number of literals in the body
* To check if the body of a rule is true
* x> @ : body evaluates to true (then head is true) |

ReLUg(x) = 1 — ReLU(1 — (ReLU(x — 8)))

* minl thresholding 1

e To check ‘there is a rule such that...’ T
* Used with "Head Matrix” (same head rules) .
* min(x, 1)

ReLU;(x) = ReLU(1 — x)

M Od EI LOSS F un CtIO N (L(x) = O corresponds to stable models)

e Given interpretation vector x (n_atom, 1)

| [MIIReLU; (DTReLUy(QIx; 1 — x1 + fr — fr) — xII3 +
L(x) = > LxOx —1)||5 + 1. Is the model supported? (Tp(x) = x?)
AB ReLUg(C[x; 1 — x])”% 2. Is x binary?

3. Does x satisfy all constraints?

Q: Program Matrix

* L(x) = 0iif x is a stable model C: Constraint Matrix
1. xisasupported model / Tp(M) =M D: Head Matrix
2. xisa0-1binary vector fr: Fact vector

fr: False vector

X: Interpretation vector

ReLUq: Parameterized thresholding
ReLU;: minl thresholding

3. x satisfies none of the constraints

Loss function is similar to the one in Takemura+2022.
Gradient w.r.t x was derived by hand but omitted in this presentation for brevity.

“Special” ASP rules

e Commonly used in ASP

* Choice:
- {a; b; c}.
* Choose from all possible combinations of a,b,c: {a} {b} ... {a,c} ... {a,b,c}

e Cardinality constraints:
« { assign(N,C) : color(C) } =1 :- node(N).
e Assign only 1 color to a node, e.g., graph coloring

* Sum statement:
e :- #sum { Price,Item : buy(Item), item(Item,Price) } > budget.
 The sum of item price must not exceed the budget, e.g., knapsack

* Minimize statement:
 # minimize { C/S,X : hotel(X), cost(X,C), star(X,S) }.
* Minimize the cost per star rating

Encoding special ASP rules in Program Matrix

node(1..2).
color(1..2).
{assign(N,C) : color(C)} = 1 :- node(N).

Input program

clingo (gringo) |

1. #delayed — special atom

2. Cardinality turns into weighted choice rules

I Cannot directly translate into Program Matrix

node(1). node(2). color(1). color(2).
#delayed(3). #delayed(4).

#delayed(3) <=>
1<=#count{@,assign(1,1):assign(1,1);0,assign(1,2):assign(1,2)}<=1

{assign(1,1);assign(1,2)}:-#delayed(3).
#aux(9) :- 1{assign(1,1)=1,assign(1,2)=1}.
#aux(10) :- 2{assign(1,1)=1,assign(1,2)=1}.
#aux(11l) :- #aux(9),not #aux(10).
:-#delayed(3),not #aux(11).

#delayed(4) <=>
1<=#count{@,assign(2,1):assign(2,1);0,assign(2,2):assign(2,2)}<=1

{assign(2,1);assign(2,2)}:-#delayed(4).
#aux(14) :- 1{assign(2,1)=1,assign(2,2)=1}.
#aux(15) :- 2{assign(2,1)=1,assign(2,2)=1}.
#aux(16) :- #aux(1l4),not #aux(15).
:-#delayed(4),not #aux(16).

Grounded by clingo (gringo)

Lp2mat: a translation library

INPUT: clingo-compatible ASP program
OUTPUT: Normal rules WITHOUT extended statements (matrix friendly)

Supported statements: #sum, #minimize (#maximize), #count

Not supported: #project, #external, #assume, #heuristic, #theory

How Lp2mat works
* 1. Grounding with gringo
e 2. Rule re-writing and expansion
Translate weighted cardinality rules into normal rules

Example: #sum statement

#const budget=20
:- #sum { Price, Item : buy(Item), item(Item, Price) } > budget.
“The sum of item prices must not exceed the budget”
#aux(7):-21{buy(apple)=10,buy(banana)=10,buy(chocolate)=20,buy(crisps)=25,buy(soda)=30}.
Clingo’s version (choice begins with 21-weight)

101712158109 10 10 20 11 25 12 30 (ASP intermediate format)

é—#}au.x_(7g . 12(.#aux(7) cannot be %%e)buy(soda)

a7 :- a 14 aux 1 21.

a 14 aux_ 1 21 :- a_11. %% buy(crisps)

a_14 aux 1 21 :- a 15 aux 2 21.

a_ 15 aux 2 21 :- a_ 10, a 16 aux 3 1. %% buy(chocolate)

a_16 aux 3 1 :- a_8. %% buy(apple)

a_1l6 aux 3 1 :- a 9. %% buy(banana)

:- a_7. %% NOT soda or crisps or (chocolate+apple) or chocolate(banana)

NeSy Applications

img(@). img(1). Program Matrix of ASP program
. . sum(N) :- digit(I1, N1), digit(I2, N2),
* Combined Inference & Learning img(11), img(12), 11 < 12, N = N1'+ N2

{ digit(I, D) : D =0..9 } =1 :- img(I).
/_.w:n-n
e |
“Reasoning
network”

©C o B O O

Label: 10

o P forward
MNIST addition === backward

Inference: Given (/, 4) € Dataset, infer 10.
Learning: Given (/,4, 10) € Dataset, train a model that infers 10.

*|learning to solve the addition task, not learning a logic program

Summary

e Differentiable loss function for computing stable models
e Search is still a hard problem

* Lp2mat: Logic program to Program Matrix translator

* Neural-symbolic inference & learning:
* Learning without direct supervision labels

