
Towards end-to-end ASP computation*

Katsumi Inoue
National Institute of Informatics

TAASP 2025 (TU Wien Informatics, November 25, 2025)

* Joint work with Taisuke Sato and Akihiro Takemura
(to appear in Neurosymbolic Artificial Intelligence)

Outline
1. Introduction: Towards Trustworthy AI
2. Background: Algebraic Approaches to Logic Programming
3. Main: A Framework for Differentiable ASP
4. Supplementary: Tools for Differentiable ASP (unpublished)

Towards Robust Symbolic Reasoning
• Symbolic reasoning has been used
• to derive logical consequences of knowledge bases (represented in logical formulas);
• to compute satisfiable assignments of specifications (represented as constraints).

• Symbolic reasoning ensures the correctness of computation in terms of consistency,
soundness and completeness, supposing that given knowledge and input data are correct.

• Symbolic reasoning is explainable and interpretable, which gives a foundation of XAI.

• Logical knowledge and derived theorems can be stored and reused.

• The bottleneck exists in obtaining correct knowledge.

• Reasoning algorithms lack scalability and are not tolerant to noise.

• We often need huge commonsense as background knowledge.

These weakness could be covered by combining with Machine Learning methods.

vLinear-algebraic logic programming
vDifferentiable logic reasoning and learning
vIncorporating constraints into ML systems

Applications
vObject detection
vVQA, NLI, Robotics
vBiology, Physics, etc.

Bridging Two Spaces

High-speed algebraic computation on GPUs

Integrating KR and ML for Trustworthy AI
LLM

Neurosymbolic AI

Discrete/Symbolic ⇄ Continuous/Numeric
• Domains: Boolean, multi-valued/discrete, continuous
• Constraint types: logical, Pseudo-Boolean, linear, non-linear, differential
• Spectrum of search algorithms:

• Complete: systematic, DPLL, CDCL
• Local search (grid search): greedy, mixed random walk
• Large neighborhood search (LNS): several neighborhood definitions
• Continuous search: cost-minimization, differentiable

• Varieties of optimization methods:
• Combinatorial: intractable, greedy randomized
• Continuous: iterative, gradient, Newton
• Cross-entropy, Evolutional, Quantum, etc.

• Multi-variate time-series data as input
• Multiple variables can be handled simultaneously: Array computing
• Applications to many areas, e.g., XAI, Edge AI, CPS, biology

Neuro(-)symbolic AI (NeSy)

• The popularity of neuro-symbolic approaches has been on the rise in
recent years, e.g., Artur Garcez et al. (2019); Gary Marcus (2022).
• The goal is to integrate “the two most fundamental aspects of intelligent

cognitive behavior” (Leslie Valiant, 2003):
• the ability to learn from experience, and
• the ability to reason from what has been learned.

• Analogies have also been drawn with dual process theories in psychology
(Daniel Kahneman, 2011; Francesca Rossi, 2022).

System 1 (Neural / reflexive) System 2 (Symbolic / deliberative)⇄

• Explainable models for black-box learning systems
• symbolic rule extraction from neural networks
• construction of logic circuits that simulate machine learning systems

• Hybrid systems (popular in NeSy)
• neural pattern recognition followed by symbolic problem solving
• verification of machine learning outputs by symbolic reasoning
• neural pattern recognition enhanced/constrained with symbolic reasoning

• Embedding symbolic knowledge in vector spaces
• knowledge graph embedding
• program syntheses, neural/differentiable programming
• neuro-symbolic reasoning: theorem proving, logic programming, answer

set programming, abduction, etc.
• large language models

Neurosymbolic reasoning and learning

Waymo Open Dataset

https://waymo.com/open/

https://waymo.com/open/

ROAD-Waymo

Khan et al., https://doi.org/10.48550/arXiv.2411.01683

https://doi.org/10.48550/arXiv.2411.01683

[1] Eleonora Giunchiglia, et al.: ROAD-R: the autonomous driving dataset with logical requirements. Machine Learning, 112 (2022)
[2] S. Moriyama, K. Watanabe, K. Inoue, A. Takemura: MOD-CL: Multi-label Object Detection with Constrained Loss. arXiv (2024)

ROAD-R: Autonomous Driving with Requirements

• Multi-label Object Recognition
• Agent detection
(Pedestrian, Car, Cyclist, Emergency-Vehicle etc.)
• Action detection
(Turning-right, Moving-away, Pushing-objects, etc.)
• Location detection
(Vehicle-lane, Right-pavement, Bus-stop, etc.)

• Requirements (= hard logical constraints)[1]

• A traffic light cannot move.
• A traffic light cannot be red and green at the same time.
• If an agent is crossing, it is either a pedestrian or a cyclist.

• ROAD-R Challenge for NeurIPS 2023:
• NII Team Results[2]: Task 2 (supervised) Won，Task 1 (semi-supervised) 3rd

https://sites.google.com/view/road-r/dataset

• Methods: Extend pre-trained recognition model, use Partial Weighted MaxSAT

https://sites.google.com/view/road-r/dataset
https://sites.google.com/view/road-r/dataset
https://sites.google.com/view/road-r/dataset

Logical Constraints in ROAD-R (all hard constraints)

Challenges:
1. Can these constraints help learning with small amount of training data?
2. How can hard constraints be 100% satisfied using neurosymbolic methods?

Adaptive Object Detection for ROAD-R/Waymo
(T. Eiter, N. Higuera, K. Inoue, S. Moriyama, NeurIPS 2025)

𝐿 = 𝐿!"#$%& + 𝜆 % 𝐿'(!)*$%+!",

• extends MOD-CL, the winning model of ROAD-R Challenge for NeurIPS 2023
• seamless integration of the constrained loss into object detection models
• adaptive selection of 12 t-norms of fuzzy logic in evaluating constrained loss
• dynamic change of λ (constraint satisfaction degree) by regularization scheduling

Constrained Loss

Model

Neural Loss

Predictions

T-norm choice

Static
t-norm

Adaptive
t-norm

Average
Violation

Static
𝛌

𝛌 choice

𝛌
Scheduler

Combined
Loss

T-norm Set

Constraints Set

ROAD-Waymo: YOLO (vanilla, 𝜆 = 0)

ROAD-Waymo: YOLO + Constraints (Gödel, 𝜆 = 100)

Outline

1. Introduction: Towards Trustworthy AI
2. Algebraic Approaches to Logic Programming
3. A Framework for Differentiable ASP
4. Tools for Differentiable ASP (unpublished)

Algebraic approach to logic programming

• Linear algebraic approaches to logic programming contribute to a step toward realizing
robust and scalable logical inference.

1. Matrix-vector product methods are used for exact computation, which can be
scalable, and are the basis for the differentiable method.

2. Differentiable methods are used for approximate computation, which can be
robust to noise, and are connected to machine learning.

• Machine learning of logic programs can be realized by computing matrix/tensor
representation of programs from input-output pairs.

Logical inference in vector spaces, I
—Linear-algebraic methods (Sakama, Inoue & Sato, 2021)

• Common Principle:
• Representation (encoding): formulate logical formulas as vectors/matrices/tensors
• Computation: apply linear algebraic operations on these elements

• P : (logic) program, constraints ⥭ matrix MP

• I : assignment/interpretation ⥭ vector vI

• J = TP (I) = { h | (h ← b1 &…& bm)∈ P, {b1,…,bm}⊆I }: immediate consequences

⥭ vector vJ = θ(MP vI), where θ	 is a binary threshold function

• Expected:
• High performance computation based on the sparsity of matrices (Nguyen, Inoue & Sakama, 2022)
• Parallelism by GPU computation + partial evaluation (poss. exponential speedup)

ØChiaki Sakama, Katsumi Inoue, Taisuke Sato: “Logic programming in tensor spaces”, AMAI, 89:1133-1153 (2021).

• Common Principle:
• Set a loss function L
• Formulate a problem as cost minimization of L with parameter tensor x
• Compute a minimum x of L by SGD/Newton’s method
• if L(x) = 0, then x is a solution
• Threshold x to a binary tensor representing a logical solution

• Expected:
• Robustness by continuity
• Scalability by multi-core/GPU parallelism
• Smoothness to combine with neural systems

Logical inference in vector spaces, II
—Continuous/differentiable methods (Sato & Kojima 2019)

Ø Sato T., Kojima R.: “Logical Inference as Cost Minimization in Vector Spaces”, IJCAI 2019 International Workshops,
LNAI 12158, pp.239-255 (2020).

𝜕𝐿(𝒙)
𝜕𝒙

Gradient of L(x)

Differentiable reasoning & learning in vector spaces

p :- not q.
q :- not p.

P

DP

𝑝 𝑞 𝑝̅ *𝑞
𝑝
𝑞

0 0
0 0

0 1
1 0

x

𝑝
𝑞

0
1

Model Vector
Program Matrix

Program

Answer Set Programming
Stable model /supported model semantics

{p} {q}

M

Model (stable/supported)

Inference (forward)
Application of TP operator based on
(Sakama et al., KSEM 2017):
(Aspis et al., KR 2020),
(Takemura & Inoue, LPNMR 2022)

Learning programs
Learning Boolean Networks (Sato &
Kojima, KR 2021),
Differentiable LFIT (Gao et al., MLJ 2021)

Learning from Interpretation Transition
(LFIT)

Differentiable computation of supported models

1. Embed a logic program
P into a Program Matrix DP

2. Define Loss function
w.r.t. continuous-valued
interpretation such that
Loss = 0 corresponds to
an intended model of P

3. Minimize the loss with
gradient descent, to reach
supported models

p :- p.
q :- not p.P

DP
𝑝 𝑞 𝑝̅ *𝑞

𝑝
𝑞

1 0
0 0

0 0
1 0

x 𝑝
𝑞

0
0

Interpretation vector

Program Matrix

Program

𝐿(𝒙) 𝜕𝐿(𝒙)
𝜕𝒙

Loss function Gradient of L(x)

{q}

{p}
Takemura, A. & Inoue, K. (2022). Gradient-Based Supported Model Computation in Vector Spaces. LPNMR 2022.

{p} and {q} are supported, but only {q} is stable

Differentiable computation of stable models [this talk]

1. Embed a logic program
P into a Program Matrix DP

2. Define Loss function
w.r.t. continuous-valued
interpretation such that
Loss = 0 corresponds to
models of P

3. Minimize the loss with
gradient descent, to reach
stable models

p :- p.
q :- not p.P

DP
𝑝 𝑞 𝑝̅ *𝑞

𝑝
𝑞

1 0
0 0

0 0
1 0

x 𝑝
𝑞

0
0

Interpretation vector

Program Matrix

Program

𝐿(𝒙)
Loss function Gradient of L(x)

{q}

Semantically inspired checks
ü Supported model
ü Unfounded set
ü Loop formulas

{p} and {q} are supported, but only {q} is stable

Ø Sato, T., Takemura, A. & Inoue, K.: Towards end-to-end ASP computation, arXiv:2306.06821, 2023.

𝜕𝐿(𝒙)
𝜕𝒙

Loss function (is exactly 0 when x is a supported model)

• Given
• DP: program matrix, shape: [|Heads|, |BP+|] #|BP+| = 2·|Heads|
• x: candidate interpretation vector, shape: [|BP+|, 1]
• ||x||F: Frobenius norm (2-norm)
• Fθ: thresholding function (parameterized θ-thresholding)

1.
When m is a supported model, TP(m)=m
When this term is 0, we have Fθ(DPx) = x

2.
Pruning fractional
interpretations
(0 if all elements are 0 or 1)

𝐿(𝒙) =
1
2 𝐹! (𝑫"[𝒙; 𝟏 − 𝒙]) − 𝒙 #

$ + 𝜆% 𝒙⨀(𝒙 − 1) #
$ + 𝜆$ 𝒇 − (𝑥⨀𝒇) #

$

3.
Penalty for
‘forgetting’ facts
(0 if assignments on
facts do not change)

Logical reasoning realized in vector spaces (in our group)

first-order (FO)
deduction (Sato, TPLP

2017)

FO abduction (Sato,
Inoue & Sakama,

IJCAI 2018)

logic programming (LP)
fixpoint computation

(Sakama, Inoue & Sato,
KSEM 2017; AMAI

2021)

Sparse method for LP
(Nguyen, Inoue &

Sakama, ICLP 2021;
NGC 2022)

ASP (supported
models) (Sato,

Inoue & Sakama,
ICAART 2020)

LP abduction (Nguyen,
Inoue & Sakama, ICTAI
2021; PADL 2023; ICTAI

2024)

differentiable ASP
(supported models)
(Takemura & Inoue,
LPNMR 2022; ECAI

2024)

differentiable ASP
(stable models)

(Sato, Takemura &
Inoue, arXiv 2023;

NSAI 2025)

SAT (MatSat)
(Sato & Kojima,

PoS 2021)

Boolean network
learning (Sato &
Kojima, KR 2021)

differentiable LFIT
(transformer-based)

(Phua & Inoue, ILP 2019;
ILP 2021; NeSy 2024)

differentiable LFIT
(matrix learning)

(Gao, Wang, Cao &
Inoue, MLJ 2022)

induction of FO LP
(Gao, Inoue, Cao &

Wang, IJCAI 2022; AIJ
2024)

DNF learning (Sato
& Inoue, MLJ 2023)

differentiable rule
learning from real-valued

time-series data (Gao,
Inoue, Cao, Wang & Yang,

ICLR 2025)

Similarities between minimization tasks
task minimize … X / x is ….

Matrix decomposition 𝑋	 − 𝑨	𝑩	 -.
0-1 matrix
‘relation’

Relation abduction [Sato+ 2018] 𝑅/ − 𝑅0𝑿 -
. 0-1 matrix

‘relation’

Satisfiability [Sato & Kojima 2018] 1 − 𝑡(𝑄	[𝒙; 1 − 𝒙]) -
. 0-1 vector

‘assignment’

Supported model [Takemura & Inoue 2022] 𝑡 𝑃[𝒙; 1 − 𝒙] − 𝒙 -
. 0-1 vector

‘interpretation’

Supported model
(N.B.: This term does not check for unfounded sets)

𝑡(𝐷1𝑡′ 𝑃 𝒙; 1 − 𝒙 − 𝒙 -
. 0-1 vector

‘interpretation’

Sato, T., Inoue, K., & Sakama, C. (2018). Abducing Relations in Continuous Spaces. IJCAI 18 https://doi.org/10.24963/ijcai.2018/270
Sato, T., & Kojima, R. (2020). Logical Inference as Cost Minimization in Vector Spaces. IJCAI 19 Workshops https://doi.org/10.1007/978-3-030-56150-5_12
Takemura, A., & Inoue, K. (2022). Gradient-Based Supported Model Computation in Vector Spaces. LPNMR 2022.

https://doi.org/10.24963/ijcai.2018/270
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12
https://doi.org/10.1007/978-3-030-56150-5_12

Differentiable rule induction from raw time series data[1]

Dense
layer

Em
be

dd
in

gs

Encoder Decoder

Differentiable
k-means

All
subsquences s

of a series x

Reconstructed
subquences s’

Deep
rule learning

module

Logic programs P
r1r1

r3r3

r2r2

r4r4

z

Label of the series x

Extract

Predicted label

Legend

Differentiable path

Predict

Loss for autoencoder
（supervised）

Loss for DeepFOL
(supervised)

Loss for differentiable k-
means (unsupervised)

Dense
layer

Dense
layerDense

layer

vIvI

v(ht)v(ht)Shape as semantics

Patching

Region 1 Region 2 Region 3 Region 5Region 4

[2]

[1] K. Gao, K. Inoue, Y. Cao, H. Wang, F. Yang: ICLR 2025
[2] K. Gao, K. Inoue, Y. Cao, H. Wang: IJCAI 2022, AIJ 2024

Application viewpoints

• We have shown that logical computation can be transformed to numeric
computation using algebraic representation.
• The methods have some effects on purely symbolic domains, e.g., random

instances whose solving heuristics are not well-known.
• But they are more effective on in uncertain environments, in which errors often

occur. Then we can construct robust reasoning systems.
• Other expected domains exist on such interfaces between low-level perception

and high-level reasoning in neurosymbolic fields.

Loss functions for NeSy tasks with embedded logic programs

OUT

IN

Implication
sum(0) :- observe(i1,0,i2,0).
sum(1) :- observe(i1,0,i2,1).
sum(1) :- observe(i1,1,i2,0). ...

Constraints
:- sum(0), not observe(i1,0,i2,0).
:- sum(1), not observe(i1,0,i2,1),
 not observe(i1,1,i2,0). ...

CNN

10

1
9

Logical Loss
 = IL + CL

Implication Loss (BCE)
Predicted
digits

Constraint Loss (BCE)

At inference time

Gradient
Backpropagation

+

=

MNIST
addition

Continuous
“Interpretation”

ØAkihiro Takemura, Katsumi Inoue: “Differentiable Logic Programming for Distant Supervision”, ECAI 2024.

Outline
1. Introduction: Towards Trustworthy AI
2. Background: Algebraic Approaches to Logic Programming
3. Main: A Framework for Differentiable ASP
4. Supplementary: Tools for Differentiable ASP (unpublished)

Answer Set Programming (ASP)

• A declarative approach to combinatorial problems
• A problem is specified by a logic program P
• A solution (answer set) is a set of ground atoms representing a stable model of P
• There are many applications: planning, diagnosis, robotics, NLP, KG etc
• Potassco project (https://potassco.org/) has been main driving force in developing

ASP systems

• In neuro-symbolic AI, ASP has been used for symbolic representation and
reasoning

https://potassco.org/

Stable model computation
• Stable model semantics [Gelfond & Lifschitz 1988]

– Smodels [Niemelä & Simons 1997]: bottom-up backtracking search

• SAT solver based
– ASSAT [Lin & Zhao 2004]: incremental loop formula test
– Cmodels [Lierler 2005]: disjunctive adaption of ASSAT

• CDNL (conflict driven nogood learning)
– clasp [Gebser+ 2007]: generalization of CDCL

• Neural combined approach
– 𝜕ASP/SAT [Nickles 2018]: ASP solver + decision literal by cost function
– NeurASP [Yang+ 2020]: ASP solver + (neural atoms + soft-max) + NN
– SLASH [Skryagin+ 2021]: similar to NeurASP + probabilistic circuit

• Supported model computation by matrix encoding
– [Aspis+ 2020]: MD condition + cost function (quadratic polynomial, sigmoid)
– [Takemura & Inoue 2022]: SD condition + cost function (quadratic polynomial, ReLU-like)

• No end-to-end approach to stable model computation exists

End-to-end ASP
• We reformulate stable model computation for propositional normal logic programs in

vector spaces and compute stable models by minimizing a cost function
• Unlike [Aspis+ 2020] and [Takemura & Inoue 2022], which compute supported models,

we compute stable models by
– incorporating constraints and loop formulas
– imposing no restriction on the syntactic form of programs such as the MD condition

[Sakama, Inoue & Sato 2017] and the SD condition [Sakama, Inoue & Sato 2021]
• We compute a root u of a non-negative cost function LSu by Newton’s method

– LSu is derived from strong disjunction min(x+y,1) in Łukasiewicz (real valued) logic:
– 𝑣 (x ⊕ y) = min(1, 𝑣 (x) + 𝑣 (y)) = min1(𝑣 (x) + 𝑣 (y))

Matricized program P = (C, D)

• P = 6
p :− q & ~r.
p :− ~q & s.
q.	

comp(P) =

p ⇔ (q & ~r) ∨ (~q & s)
q ⇔ () : empty body
r ⇔ 	{} : empty disjuncjon
	 s ⇔ {} : empty disjuncjon

 p q r s ~p ~q ~r ~s

• C =

0	 1	 0	 0
0	 0	 0	 1
0	 0	 0	 0

0	 0	 1	 0
0	 1	 0	 0
0	 0	 0	 0

0	 0	 0	 0
0	 0	 0	 0

0	 0	 0	 0
0	 0	 0	 0

 p p q r s

• D =

1	 1 0	 0	 0
0	 0
0	 0
0	 0

1	 0	 0
0	 0	 0
0	 0	 0

Cpos Cneg

• p’s 1st rule has body q & ~r
• p’s 2nd rule has body ~q & s
• q’s 1st rule has empty body (unit clause)
• r has no rule
• s has no rule

• p has two rules C(1,:) ∨ C(2,:)
• q has one rule C(3,:)
• r has no rule
• s has no rule

Supported model
• Given a normal logic program P = (C, D), compute P’s supported models

s in vector spaces
• s is possibly a stable model of P
• Put C = [Cpos

 Cneg], where Cpos : positive part of C, Cneg : negative part of C
• Let sI be a binary vector as interpretation I for P
 M = 1 −	min1(Cpos(1 −	sI) +	CnegsI) : truth value of rule bodies by sI
 dS = min1(DM) : truth value of disjunctive rule bodies by sI

• dS = sI iff sI is a model of comp(P)
 iff sI is a supported model of P

Cost function LSu and its Jacobian JLSu

• dS = min1(DM), M = 1 −	min1(Cpos(1 −	sI) +	CnegsI)
• LSu = (1/2)$∥ dS −	sI ∥2 +(1/2)$ ℓ2$∥ sI ⨀(1 −	sI) ∥2 (ℓ2>0)
• Let E = dS −	sI and F = sI ⨀(1 −	sI). Then,
• LSu = (1/2)$∥ E ∥2 + (1/2)$ ℓ2$∥ F ∥2

• LSu
 = 0 iff dS = sI and sI is binary

 iff sI is a supported model of P = (C, D)

• JL
Su = :(E;E)

:sI
+ ℓ2 $

:(F;F)
:sI

 = (Cpos −	Cneg)T	[N≤1] ⨀ (DT	([(DM)≤1]⨀E))) −	E
	 +	ℓ2 $ ((1 −	2$ sI) ⨀ F), where N = Cpos (1 −	sI) +	CnegsI

Constraints and Lc
• 2C = [2Cpos	2Cneg] represents a set of (integrity) constraints

• Example: C = 4	:− a & ~b.
:− b & ~c.

 a b c ~a ~b ~c

• 2C = 1	0	0 0	1	0
0	1	0 0	0	1

• Lc = (1 • (1 −min(N!C , 1))) = |violated constraints|
 where N!C = <Cpos ;(1 −	 sI) +	<Cneg 	 ;sI = |false literals in constraint evaluation|
• Lc = 0 iff every conjunct in the body is evaluated false (constraint is satisfied)
• JL

c = (2Cpos − 2Cneg)T	[N!C < 1]

2Cpos 2Cneg

:- a & ~b.
:- b & ~c.

Computing supported models satisfying constraints

• Given a program P = (C, D) and constraints 2C, we compute supported models by
minimizing LSu+c = LSu + ℓ36Lc to zero
– LSu = (1/2)6∥ min1(DM) −	sI ∥2 +	(1/2)6 ℓ26∥ sI ⨀(1 − sI) ∥2 (ℓ2>0)
– Lc = (1 • (1 −	min(N!C,1)))

• We use Newton’s method with Jacobian JL
Su+c = JL

Su +	ℓ36JL
c

JL
Su = (Cpos −	Cneg)T	[N≤1] ⨀ (DT	([(D6M)≤1]⨀E))) −	E +	ℓ2 (sI ⨀(1 −	sI)⨀(1 −	26 sI))

JL
c = (2Cpos − 2Cneg)T	[N!C < 1]

• For stable models, we compute supported models from random initialization until a

stable models is found

Minimization algorithm
• Input: metricized program P = (C, D), constraint matrix 2C
 Output: binary vector sI

* such that LSu+c(sI
*) = 0

• 1: initialize sI randomly
• 2: for i = 1 to max_try
 for j = 1 to max_itr
 threshold optimally sI to binary sI

* and compute error = JSu+c(sI
*);

 if (error = 0) break ;
 compute LSu+c = LSu + ℓ36Lc and JL

Su+c = JL
Su + ℓ36JL

c ;
 sI = sI − g	(LSu+c/∥	JL

Su+c ∥2
2)	JL

Su+c ;
 endfor
 if (error = 0) break ;
 perturbate sI ;
 endfor

3-coloring of G0
• Consider a 3-coloring problem of graph G0:
 Nodes = {a, b, c, d}, color = one-of(red, blue, green)
• Program P: one-of(a1, a2, a3) .. one-of(d1, d2, d3)

• Constraints C (two nodes connected by an edge must have different colors)

a1 :- ~a2, ~a3. a2 :- ~a1, ~a3. a3 :- ~a1, ~a2.
b1 :- ~b2, ~b3. b2 :- ~b1, ~b3. b3 :- ~b1, ~b2.
c1 :- ~c2, ~c3. c2 :- ~c1, ~c3. c3 :- ~c1, ~c2.
d1 :- ~d2, ~d3. d2 :- ~d1, ~d3. d3 :- ~d1, ~d2.

e3e2

e5

e4

e1a b

c d

G0

:- a1, b1. :- a2, b2. :- a3, b3. (by e1)
:- a1, c1. :- a2, c2. :- a3, c3. (by e2)
:- b1, c1. :- b2, c2. :- b3, c3. (by e3)
:- b1, d1. :- b2, d2. :- b3, d3. (by e4)
:- d1, c1. :- d2, c2. :- d3, c3. (by e5)

e3e2

e5

e4

e1a b

c du = [a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3]T

 = [0 0 1 0 1 0 1 0 0 0 0 1]T

Matrix encoding
• Program P = (C, D)

• Constraint 2C

H =
0 1 1
1 0 1
1 1 0

D =

I
 I
 I
 I

I =
1 0 0
0 1 0
0 0 1

a b c d ~a ~b ~c ~d

a: H
b: H
c: H
d: H

0
a1 a2 a3

C =

Cpos Cneg

I I
I I
 I I
 I I
 I I

0

every atom has a single rule

average over
10 runs time(s)

#solution
/10 trials

Su 6.7 (0.7) 5.2 (0.9)

GL reduct 8.1 (0.7) 4.7 (0.7)
1 trial: max_try = 20, max_itr = 50, ℓ2 = ℓ3= 0.1

Computing performance

Programs are run on a PC with Intel(R) Core(TM) i7-
10700@2.90GHz CPU with 26GB memory

:a
:b
:c
:d

<C =

!Cpos !Cneg

3-coloring of cycle graph
• Consider a 3-coloring problem of cycle graph:
 Nodes = {1,..,n}, color = one-of(red, blue, green)
• 3n atoms: D(3n x 3n), C(3n x 6n), <C(3n x 6n)
• #3-coloring_of_cycle(n) = 2n +	2;(−1)n

1

6
5

4

8

3

2

7

Scalability

time to find a solution

Convergence curve

n = 10, max_retry=100,
max_itr=50

retry

solution found
by thresholding

Hamiltonian cycle problem
• Hamiltonian cycle (HC): a round trip visiting every city once
• Two types of encoding possible

– non-tight normal logic program + constraint [Niemela 1999], [Lin+ 2003]
– tight normal logic program + constraint (none?)

• We modify the SAT encoding of HC by [Zhou 2020]
U(j,q) = 1: node j is in HC and visited at time q (1≤i,q≤K)
H(i,j) = 1: edge i→j is in HC
(1) one-of(H(i,j1)..H(i,jk)) : outgoing edges are exclusive (1≤i≤K)
(2) one-of(H(i1,j)..H(ik,j)) : incoming edges are exclusive (1≤i≤K)
(3) H(1,j) ⇒ U(j,2) : redundant and removed
(4) H(i,1) ⇒ U(i,K) : if i→1 exists, i is visited at time K (2≤i≤ K)
(5) H(i,j) & U(i,q-1) ⇒ U(j,q) : if i→j exists and node i is visited at time q-1,
 node j is visited at time q (1≤i,j≤K, 2≤q≤ K)
(6) one-of(U(i,1)..U(i,K)) : node i is visited exactly once (1≤i≤K)
(7) U(1,1) : node 1 is visited at time 1 (starting node)

transformation to
inherently tight program

Hamiltonian cycle problem (cont’d)
• We solve the HC problem for G1
• We introduce 72 atoms for H(i,j) and U(j,q) and
 encode the HC problem as follows:

H(1,2) :- ~H(1,3) & ~H(1,4).
U(2,4) :- (U(1,3) & H(1,2)) ∨ ⋯∨	(U(6,3) & H(6,2)).

3

1

5

2

4

6

from A User's Guide to gringo, clasp,
clingo, and iclingo ver.3, 2010

G1

(1) one-of(H(i,j1)..H(i,jk))
(4) H(i,j) & U(i,q-1) ⇒ U(j,q)
(7) U(1,1)

tight program (D Q)
 Q(197 x 144)
 D(72 x 197)

(2) one-of(H(i1,j)..H(ik,j))
(5) H(i,1) ⇒ U(i,K)
(6) one-of(U(i,1)..U(i,K))

constraint (ℓ3 'JC)
 Qc(66 x 144)

ℓ3 0.02 0.05 0.1 0.15 0.2

time(s) 5.2(6.6) 4.5(4.4) 5.1(4.3) 8.2(8.6) 6.2(7.0)

Average time to find a HC over 10 trials (octave on PC: 2.90 GHz 32GB)

There are five HCs:
1 -> 2 -> 6 -> 3 -> 5 -> 4 -> 1
1 -> 2 -> 6 -> 5 -> 3 -> 4 -> 1
1 -> 3 -> 5 -> 6 -> 2 -> 4 -> 1
1 -> 4 -> 2 -> 5 -> 6 -> 3 -> 1
1 -> 4 -> 2 -> 6 -> 5 -> 3 -> 1

Loop formulas LF
• We can compute solely stable models sI of a program P by matricizing the Lin-Zhao

theorem [Lin and Zhao 2004]:
 sI is a stable model of P iff sI ⊨ comp(P) and sI ⊨ LF
• Loop formulas LF:

– Loop S = {p1,…,pk} : atoms such that there is a path from pi to pj and vice versa in
the positive dependency graph of P; p has a self-loop when S = {p}

– Body(p) = G1∨ ⋯∨	Gj where rule (p :- Gi) ∈ P and
 Gi

+ (positive literals of Gi, possibly empty) ∩	S = ∅ (1≤ i ≤	j)
 when no such Gi exists, Body(p) is false
– LFOR(S) : OR-type loop formula associated with S
 = (p1∨ ⋯∨ pk) → (Body(p1) ∨ ⋯∨ Body(pk))
– LF : the set of all loop formulas for P = { LFOR(S) | S is a loop in P }

• LF says every loop has an exit that calls atoms outside the loop

AND-type loop formula
• OR-type Loop formulas in the Lin-Zhao theorem [Li and Zhao 2004] can be

replaced by AND-type ones [Ferraris, Lee & Lifschitz 2006]:
 LFAND(L) = (p1&⋯& pk) → (Body(p1) ∨ ⋯∨	Body(pk))

 = (~p1 ∨ ⋯∨	~pk) v (Body(p1) ∨ ⋯∨	Body(pk))
LF = { LFAND(S) | S is a loop in P }

• To reduce the computational difficulty (complete digraph has 2n-1 loops),
we heuristically choose a subclass of loops

4C1 +⋯+ 4C4 = 24−1 loops

4C1 = 4 minimal loops

 è exponential reduction

Matricizing sI ⊨	LF by LLF = 0
• Let S = {p1,…,pk} be a v-th loop in the positive dependency graph of P = (C, D),
 LFAND(S) = (p1&⋯& pk)→(Body(p1) ∨ ⋯∨	Body(pk))
• Introduce a non-negative function LLF of sI by

– LLF = ∑v=1

w
(1 − min(A(v), 1))

– A(v) = S(v, :);(1 −	sI) + S(v, :);E(v);M (1 ≤	v ≤	w) : sI ⊨ LF(S(v, :))
 p1 pk

– S(v, :) : v-th loop {p1,…,pk} = [0 .. 1 .. 1 .. 0] G1 Gj

– E(v)(p, :) = {G1,…,Gj}, where Body(p) = G1 ∨ ⋯∨	Gj = [0 .. 1 .. 1 .. 0]
– M = 1 −	min1(Cpos(1 −	sI) + CnegsI), where C = [Cpos

 Cneg] (M is the truth values of rule bodies C)

• We can prove for a binary sI

 LLF = 0 iff A(v) ≥ 1 for ∀v iff sI ⊨ LFAND(S) for ∀ loop S iff sI ⊨ LF
• JL

LF =𝜕LLF/𝜕sI

 = ∑v=1

w
[A(v) ≤ 1] ; ([N(v) ≤ 1] (S(v, :)T) + ((S(v, :) E(v))T⨀[N≤1])T(Cneg−Cpos)))T)

 where N(v) = S(v, :); sI and N = Cpos (1 - sI) + Cneg sI

sI ⊨ ~(p1&⋯& pk)

sI ⊨ Body(p1) ∨ ⋯∨ Body(pk)

Three LF heuristics
• There are exponentially many loop formulas LF

– elementary loops [Gebser+ 05], proper loops [Ji+ 14] introduced
• To guide minimization, we use a subset of LF associated with

– maximal loops: LF_max (= SCCs, self-loop must for singleton SCC {a})
– minimal loops: LF_min (= cycles, elementary loops)
– LF_min but with external supports for LF_max: LF_min_max

• comp(P) + LF_max or comp(P) + LF_min may exclude some supported
models but never stable ones

• u ⊨ LF_min_max implies u ⊨ LF, so u ⊨ comp(P) + LF_min_max
 is a sufficient condition for stable model u

Loopy program P1
• See differences between three heuristics

• Loop formulas exclude some supported models

a1

a2

a0

a3

a4

supported models = { {}, {a1,a2}, {a3,a4}, {a0,a1,a2,a3,a4} }
stable models = { ∅ }

Program P1:
 a0 :- a1 & a2 & a3 & a4.
 a1 :- a0 ∨ a2.
 a2 :- a0 ∨ a1.
 a3 :- a0 ∨ a4.
 a4 :- a0 ∨ a3.

LF_max = { a0 & a1 & a2 & a3 & a4→ ⊥ }
LF_min = { a0 & a1→a2, a0 & a2→a1, a0 & a3→a4,
 a0 & a4→a3, a1 & a2→a0, a3 & a4→a0 }
LF_min_max = { a0 & a1→⊥, a0 & a2→⊥, a0 & a3→⊥,
 a0 & a4→⊥, a1 & a2→⊥, a3 & a4→⊥ }

{a0, a1, a2, a3, a4}

{a1, a2}, {a3, a4}

{a1,a2}, {a3,a4}, {a0,a1,a2,a3,a4}

(24/2-1)+1 models

Loopy program P2
• See differences between three heuristics

• Loop formulas exclude some supported models

24/2+1 = 5 supported models, 1 stable model = {a0,a1,a2,a3,a4}

Program P2:
 a0 :- a1 & a2 & a3 & a4.
 a1 :- a0 ∨ a2.
 a2 :- a0 ∨ a1.
 a3 :- a0 ∨ a4.
 a4 :- a0 ∨ a3.
 a5 :- a5.
 a0 :- ~a5.

LF_max = { a0 & a1 & a2 & a3 & a4 →	⊥, a5 →	⊥ }
LF_min = { a0 & a1	→ a2, a0 & a2 → a1, a0 & a3 →	a4,
 a0 & a4	→ a3, a1 & a2	→ a0, a3 & a4	→a0, a5	→	⊥ }
LF_min_max = { a0 & a1	→	⊥, a0 & a2	→	⊥, a0 & a3	→	⊥,
 a0 & a4	→	⊥, a1 & a2	→	⊥, a3 & a4	→	⊥, a5 →	⊥ }

all except {a0..a4}

all supported models

a1

a2

a0

a3

a4

a5

all except {a0..a4}

Loopy program P2 (cont’d)
• The effect of loop formula heuristics

Average time and trials to find a stable model over 10 runs

• max_retry 20, max_itr = 50
• 1 trial = (max_retry ×	max_itr) computation
• 1 run = 5 trials
• time = time for 10 runs
• timeout = 240s

LF time(s) trials #supported
model

#stable
model

no LF 0.16 3.1 3.3 0.8

LF_max 4.1 1 1 1

LF_min 2.2 1 1 1

LF_min_max tiemout 5 0 0
stable model
excluded

Loopy program P2 (cont’d 2)
• Another solution constraint:
 when a model {a,b} is found, add (:- a&b.) to constrain for next solution

• Useful and necessary for multiple solutions

Average time and trials to find a stable model
another solution

constraint time(s) trials

not used 11.46 10,000

used 0.09 3.5

• no_LF used (purely supported model computation)
• max_retry = 20, max_itr = 50
• 1 trial = (max_retry ×	max_itr) updates
• 1 run = 10,000 trials
• time = average of 10 runs

no stable model found
due to learning bias

Loopy program P2_n
• Generalizing P2 to P2_n (n: even)

• Loop formulas
– 2n/2+1 supported models, one stable model M0 = {a(0),…,a(n)}
– LF_max = { a(0) & a(1) &⋯& a(n)	→ ~a(n+1), a(n+1) →	⊥ } allows M0

– LF_min = { a(1) & a(2) → a(0), a(3) & a(4) → a(0),..., a(n+1) →	⊥ } allows M0

a(0) :- a(1) & ⋯ & a(n).
 ⋮
 a(2i-1) :- a(0) ∨ a(2i). for i=1..n/2
 a(2i) :- a(0) ∨ a(2i-1). for i=1..n/2
 ⋮
 a(n+1) :- a(n+1).
 a(0) :- ~a(n+1).

Loopy program P2_n (cont’d)
• Scalability wrt n: time to find one stable model (left) and the total

number of supported models found (right)

• no_LF is much faster than LF_max, LF_min (left)
• no_LF computes non-stable models, but LF_{max, min} don’t (right)

max_try = 10, max_itr = 100, max_fp = 2n/2+1
n n

scalability |computed supported models|

More natural program: transitive closure
• Compute the lfp of comp(Ptr)

– grounding Ptr generates 64 rules in 16 atoms
– matrix encoding gives (C(16x64) D(64x128))

• Ptr has > 34 supported models
– pruning by LF_max leaves just one stable model

e4

e3

e2

e1
1 2

4 3

tr(X, Z) :- tr(X, Y) & tr(Y, Z).
tr(1, 2). tr(2 ,3). tr(2, 4). tr(3, 4).

Ptr =

time(s)

no_LF 2.8

LF_max 63.4

Time to find a stable model

max_retry = 10, max_itr = 100
LF_min takes too long

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

Adjacency matrix
of transitive closure

Domain = {1,2,3,4}

LF_max works but
 takes long time

Precomputation (1)
• For a normal logic program P = { a :- B & N. }, put P+ = { a :- B. }
• Let Pu be the GL reduct of P by a stable model sI

– Pu	⊆ P+, so lfp(Pu)	⊆ lfp(P+), hence every atom outside P+ is false in any stable model
• Precomputation: partial evaluation by false atoms

– compute FP = HB∖lfp(P+) in O(|P|), where |P| is the total number of atom
occurrences in P [Dowling+ 84]

– G’ = conjunction G with {	¬a	∈ G | a ∈ FP } removed
– P’ = { (a	←	G’) | (a ←	G) ∈ P, a ∉ FP, G+	∩	FP = ∅ }
– C’ = { (← G’) | (← G) ∈ C, G+	∩ FP = ∅ }

• sI is a stable model of P satisfying constraints C
 iff sI’ a stable model of P’ satisfying constraints C’, where sI = sI’ + { a ∈ FP is false in sI }

Precomputation (2)
• The effect of precomputation on the HC problem example

– |HB| = 72, |FP| = 32, so 32 atoms are detected as false, 40 atoms need to be decided

No precomp. Precomp.

time(s) 2.08(2.01) 0.66(0.52)

matrix
size

D: 72 x 197
 C: 194 x 144
 <C: 67 x 144

D’: 40 x 90
 C’: 90 x 80
 <C’: 52 x 80

max_try = 20, max_itr = 200, 𝑙2 = 𝑙3 = 0.1
average of 10 trials

Time to find one stable model 3

1

5

2

4

6

from “A User's Guide to gringo”,
clasp, clingo, and iclingo ver.3, 2010

G1

Precomputation (3)
• P2_n: n+2 atoms

– 2n/2+1 supported models, 1 stable model {a0,a1..an} (only an+1 is false)

a0 :- a1 & ⋯ & an.
a1 :- a0 ∨ a2. a2 :- a0 ∨ a1. ... an-1 :- a0 ∨ an. an :- a0 ∨ an-1.
an+1 :- an+1.
a0 :- ~an+1.

Time to find a stable model #computed supported models in 10 trials

Precomputation (4)
• P2_n+k: n+k+2 atoms

– (2n/2-1)(2k-1)+1 supported models, 1 stable model {a0,a1..an} (~an+1..~an+k)

a0 :- a1 & ⋯ & an. a0 :- ~an+1 & ⋯ & ~an+k.
a1 :- a0 ∨ a2. a2 :- a0 ∨ a1. ... an-1 :- a0 ∨ an. an:- a0 ∨ an-1.
an+1 :- an+1. ... an+k :- an+k.

|FP|/|HB| = 5000/10001 when n = k = 5000
 pre-computation time = 0.000005s

max_try=10, max_itr=100, 𝑙2 = 𝑙3 = 0.1, average of 10 trials

Time to find one stable model

matrix
size

C: 10001 x 15002
 D: 15002 x 20002

C’: 5001 x 10002
 D’: 10002 x 10002

In a very special case, no parameter update
required and our approach comes close to
clingo (even by octave implementation)

Summary
• Supported models for a propositional normal logic program P with constraints are

computed in vector spaces for the 3-color problem and the Hamiltonian cycle problem
• Stable models of P are computed based on the Lin-Zhao theorem by computing

supported models of P that satisfy AND-type loop formulas
• We proposed three heuristics for loop formulas to avoid computing non-stable models:

– LF_max by maximal loops (SCCs)
– LF_min by minimal loops (cycles)
– LF_min_max by merging LF_max and LF_min

• We also proposed precomputation to reduce program size
• We empirically confirmed the effect of these by simple experiments
• This is an initial study of differentiable ASP using matrix encodings
• More elaboration is expected

Outline
1. Introduction: Towards Trustworthy AI
2. Background: Algebraic Approaches to Logic Programming
3. Main: A Framework for Differentiable ASP
4. Supplementary: Tools for Differentiable ASP (unpublished)

Outline of Differentiable ASP solver

• Differentiable solver for stable model semantics
• Incomplete, approximate solver

1. Parse the normal logic program P
2. Append ”loop formula constraints” LF to P
3. Embed P + LF into matrix
4. Using a differentiable loss function,

update the interpretation vector with gradient information

Building blocks: Matrices and Vectors (1/2)

Program

p :- q.
p :- not r.
q :- p.
r :- r.

p q r ,p -q r̅

p 0 1 0 0 0 0

p 0 0 0 0 0 1

q 1 0 0 0 0 0

r 0 0 1 0 0 0

p q r

p 1 0 0

p 1 0 0

q 0 1 0

r 0 0 1

C: Program Matrix

D: Head Matrix CP: positive part

CN: negative part

xT: Interpretation vector
 a ∈ I if 1

[x; 1-x]T: Companion vector
 (for multiplying with Q)

p q r

1 1 0

p q r ,p -q r̅

1 1 0 0 0 1

fT: fact vector; 1 if P has facts

p q r

0 0 0

Building blocks: Differentiable Thresholding (2/2)
• Parameterized thresholding
• θ : (n, 1) – vector, n=number of rules
• θi : number of literals in the body
• To check if the body of a rule is true
• xi ≥ θi : body evaluates to true (then head is true)

• min1 thresholding
• To check ‘there is a rule such that…’
• Used with ”Head Matrix” (same head rules)
• min(𝑥, 1)

𝑅𝑒𝐿𝑈𝜽(𝒙) = 1 − 𝑅𝑒𝐿𝑈(1 − (𝑅𝑒𝐿𝑈(𝒙 − 𝜽)))

1

θθ-1

1

1

𝑅𝑒𝐿𝑈I(𝒙) = 𝑅𝑒𝐿𝑈(1 − 𝒙)

Model Loss Function (L(x) = 0 corresponds to stable models)

• 𝐿(𝒙) = 0 iif 𝒙 is a stable model
1. 𝒙 is a supported model / Tp(M) = M
2. 𝒙 is a 0-1 binary vector
3. 𝒙 satisfies none of the constraints

𝐿(𝑥) =
1
2

𝜆% 𝑅𝑒𝐿𝑈%(𝑫'𝑅𝑒𝐿𝑈! 𝑸 𝒙; 𝟏 − 𝒙 + 𝒇𝑻 − 𝒇𝑭 − 𝒙 $
$ +	

𝜆$ 𝒙⨀(𝒙 − 1) $
$ +	

𝜆* 𝑅𝑒𝐿𝑈! 𝑪 𝒙; 𝟏 − 𝒙 $
$	

Q: Program Matrix
C: Constraint Matrix
D: Head Matrix
fT: Fact vector
fF: False vector
x: Interpretation vector
ReLUθ: Parameterized thresholding
ReLU1: min1 thresholding

• Given interpretation vector 𝒙 (n_atom, 1)

1. Is the model supported? (Tp(x) = x?)

2. Is x binary?

3. Does x satisfy all constraints?

Loss function is similar to the one in Takemura+2022.
Gradient w.r.t x was derived by hand but omitted in this presentation for brevity.

“Special” ASP rules

• Commonly used in ASP
• Choice:

• {a; b; c}.
• Choose from all possible combinations of a,b,c: {a} {b} … {a,c} … {a,b,c}

• Cardinality constraints:
• { assign(N,C) : color(C) } = 1 :- node(N).
• Assign only 1 color to a node, e.g., graph coloring

• Sum statement:
• :- #sum { Price,Item : buy(Item), item(Item,Price) } > budget.
• The sum of item price must not exceed the budget, e.g., knapsack

• Minimize statement:
• # minimize { C/S,X : hotel(X), cost(X,C), star(X,S) }.
• Minimize the cost per star rating

Encoding special ASP rules in Program Matrix
node(1..2).

color(1..2).

{assign(N,C) : color(C)} = 1 :- node(N).

node(1). node(2). color(1). color(2).

#delayed(3). #delayed(4).

#delayed(3) <=>
1<=#count{0,assign(1,1):assign(1,1);0,assign(1,2):assign(1,2)}<=1

{assign(1,1);assign(1,2)}:-#delayed(3).

#aux(9) :- 1{assign(1,1)=1,assign(1,2)=1}.

#aux(10) :- 2{assign(1,1)=1,assign(1,2)=1}.

#aux(11) :- #aux(9),not #aux(10).

:-#delayed(3),not #aux(11).

#delayed(4) <=>
1<=#count{0,assign(2,1):assign(2,1);0,assign(2,2):assign(2,2)}<=1

{assign(2,1);assign(2,2)}:-#delayed(4).

#aux(14) :- 1{assign(2,1)=1,assign(2,2)=1}.

#aux(15) :- 2{assign(2,1)=1,assign(2,2)=1}.

#aux(16) :- #aux(14),not #aux(15).

:-#delayed(4),not #aux(16).

Input program

Grounded by clingo (gringo)

1. #delayed – special atom

2. Cardinality turns into weighted choice rules

! Cannot directly translate into Program Matrix

clingo (gringo)

Lp2mat: a translation library

INPUT: clingo-compatible ASP program
OUTPUT: Normal rules WITHOUT extended statements (matrix friendly)

Supported statements: #sum, #minimize (#maximize), #count
Not supported: #project, #external, #assume, #heuristic, #theory

How Lp2mat works
• 1. Grounding with gringo
• 2. Rule re-writing and expansion

 Translate weighted cardinality rules into normal rules

Example: #sum statement

#const budget=20

:- #sum { Price, Item : buy(Item), item(Item, Price) } > budget.

 “The sum of item prices must not exceed the budget”

#aux(7):-21{buy(apple)=10,buy(banana)=10,buy(chocolate)=20,buy(crisps)=25,buy(soda)=30}.

 Clingo’s version (choice begins with 21-weight)

1 0 1 7 1 21 5 8 10 9 10 10 20 11 25 12 30 (ASP intermediate format)

:-#aux(7). (#aux(7) cannot be true)a_7 :- a_12. %% buy(soda)
a_7 :- a_14_aux_1_21.
a_14_aux_1_21 :- a_11. %% buy(crisps)
a_14_aux_1_21 :- a_15_aux_2_21.
a_15_aux_2_21 :- a_10, a_16_aux_3_1. %% buy(chocolate)
a_16_aux_3_1 :- a_8. %% buy(apple)
a_16_aux_3_1 :- a_9. %% buy(banana)
:- a_7. %% NOT soda or crisps or (chocolate+apple) or chocolate(banana)

NeSy Applications
• Combined Inference & Learning

CNN

CNN

0 1 … 9

.1 .1 … .1

0 1 … 9

.1 .2 … .2

“Reasoning
network”

0 … 9 0 … 9

.1 … .1 .1 … .2

0 0.

… 0.

10 1.

… 0.

18 0.

Label: 10

MNIST addition
Inference: Given (,) ∈ Dataset, infer 10.
Learning: Given (, , 10) ∈ Dataset, train a model that infers 10.
*learning to solve the addition task, not learning a logic program

img(0). img(1).
sum(N) :- digit(I1, N1), digit(I2, N2),
img(I1), img(I2), I1 < I2, N = N1 + N2.
{ digit(I, D) : D = 0..9 } = 1 :- img(I).

CrossEntropy

Program Matrix of ASP program

concat[digit1, digit2]
𝐿(𝒙)

forward

MAP? Abduction?

backward

Summary

• Differentiable loss function for computing stable models
• Search is still a hard problem

• Lp2mat: Logic program to Program Matrix translator

• Neural-symbolic inference & learning:
• Learning without direct supervision labels

