

Towards end-to-end ASP computation*

Katsumi Inoue

National Institute of Informatics

TAASP 2025 (TU Wien Informatics, November 25, 2025)

* Joint work with **Taisuke Sato** and **Akihiro Takemura**
(to appear in *Neurosymbolic Artificial Intelligence*)

Outline

1. Introduction: Towards Trustworthy AI
2. Background: Algebraic Approaches to Logic Programming
3. Main: A Framework for Differentiable ASP
4. Supplementary: Tools for Differentiable ASP (unpublished)

Towards Robust Symbolic Reasoning

- Symbolic reasoning has been used
 - to derive *logical consequences* of knowledge bases (represented in *logical formulas*);
 - to compute *satisfiable assignments* of specifications (represented as *constraints*).
- Symbolic reasoning ensures the **correctness** of computation in terms of *consistency*, *soundness* and *completeness*, supposing that given knowledge and input data are correct.
- Symbolic reasoning is *explainable* and *interpretable*, which gives a foundation of **XAI**.
- Logical knowledge and derived theorems can be stored and reused.

- The bottleneck exists in obtaining correct knowledge.
- Reasoning algorithms lack **scalability** and are **not tolerant to noise**.
- We often need huge **commonsense** as background knowledge.

These weakness could be covered by combining with Machine Learning methods.

Integrating KR and ML for Trustworthy AI

Symbolic/Discrete Space

❖ Knowledge Representation and Reasoning (KR)

- Interpretability
- Explainability

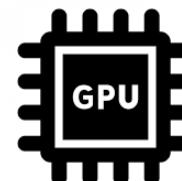
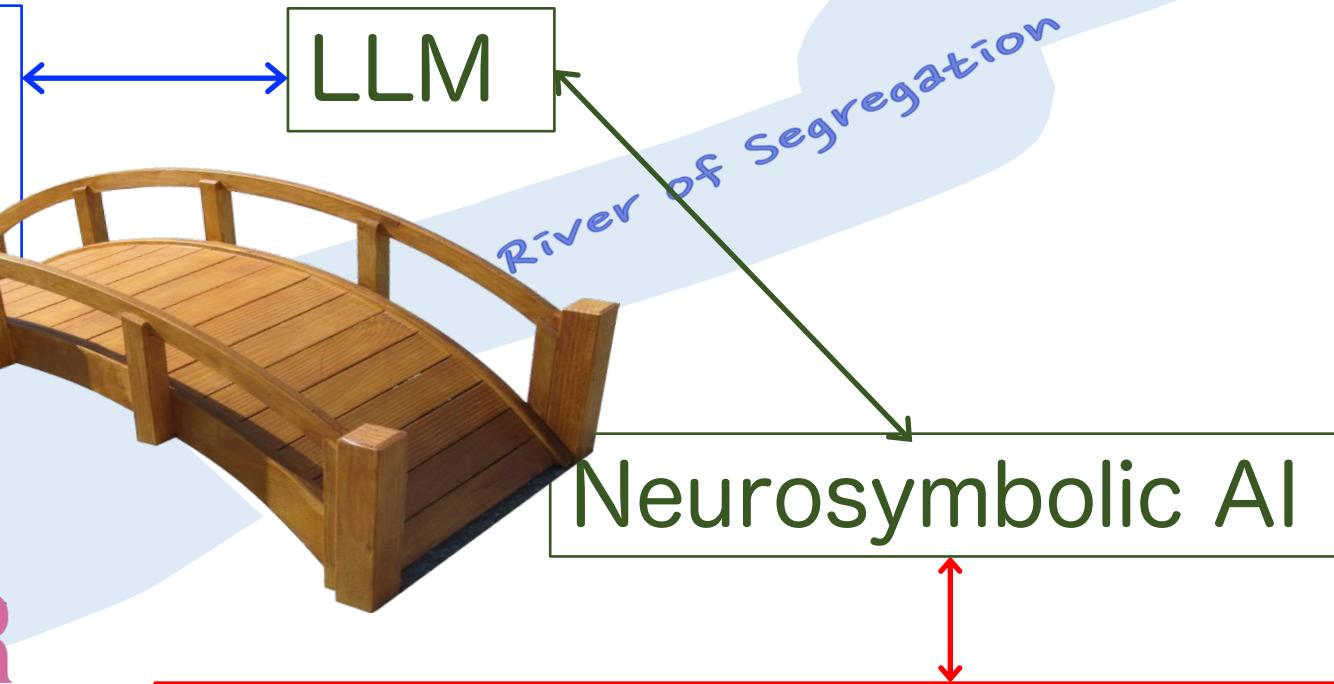
Bridging Two Spaces

MI
SR

- ❖ Linear-algebraic logic programming
- ❖ Differentiable logic reasoning and learning
- ❖ Incorporating constraints into ML systems

Applications

- ❖ Object detection
- ❖ VQA, NLI, Robotics
- ❖ Biology, Physics, etc.



Numeric/Continuous Space

❖ Machine Learning (ML)

- Robustness
- Scalability

High-speed algebraic computation on GPUs

Discrete/Symbolic \rightleftarrows Continuous/Numeric

- Domains: Boolean, multi-valued/discrete, continuous
- Constraint types: logical, Pseudo-Boolean, linear, non-linear, differential
- Spectrum of search algorithms:
 - Complete: systematic, DPLL, CDCL
 - Local search (grid search): greedy, mixed random walk
 - Large neighborhood search (LNS): several neighborhood definitions
 - Continuous search: cost-minimization, differentiable
- Varieties of optimization methods:
 - Combinatorial: intractable, greedy randomized
 - Continuous: iterative, gradient, Newton
 - Cross-entropy, Evolutional, Quantum, etc.
- Multi-variate time-series data as input
- Multiple variables can be handled simultaneously: Array computing
- Applications to many areas, e.g., XAI, Edge AI, CPS, biology

Neuro(-)symbolic AI (NeSy)

- The popularity of *neuro-symbolic* approaches has been on the rise in recent years, e.g., Artur Garcez et al. (2019); Gary Marcus (2022).
- The goal is to integrate “the two most fundamental aspects of intelligent cognitive behavior” (Leslie Valiant, 2003):
 - the ability to learn from experience, and
 - the ability to reason from what has been learned.
- Analogies have also been drawn with dual process theories in psychology (Daniel Kahneman, 2011; Francesca Rossi, 2022).

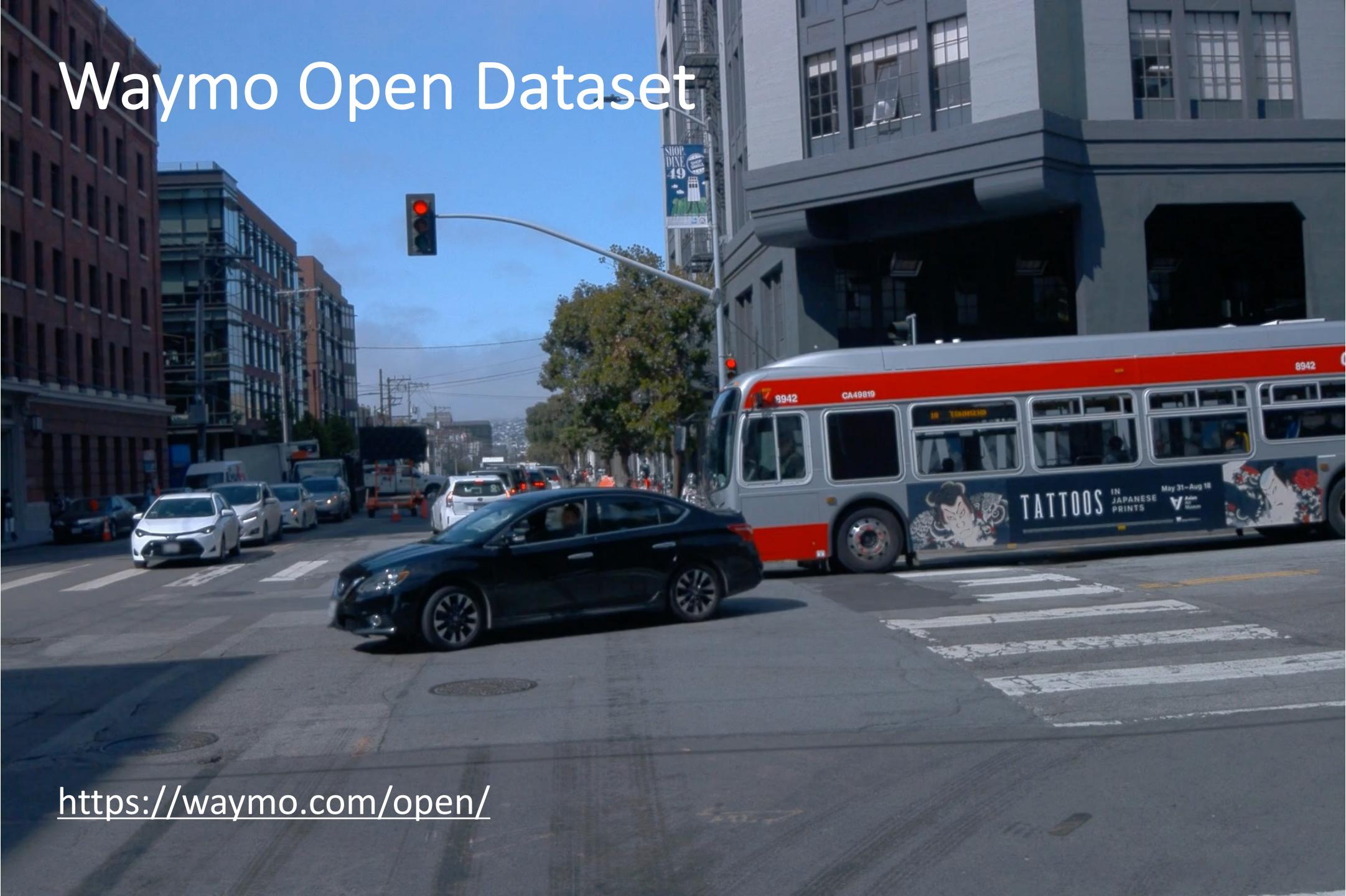
System 1 (Neural / reflexive)

System 2 (Symbolic / deliberative)

Neurosymbolic reasoning and learning

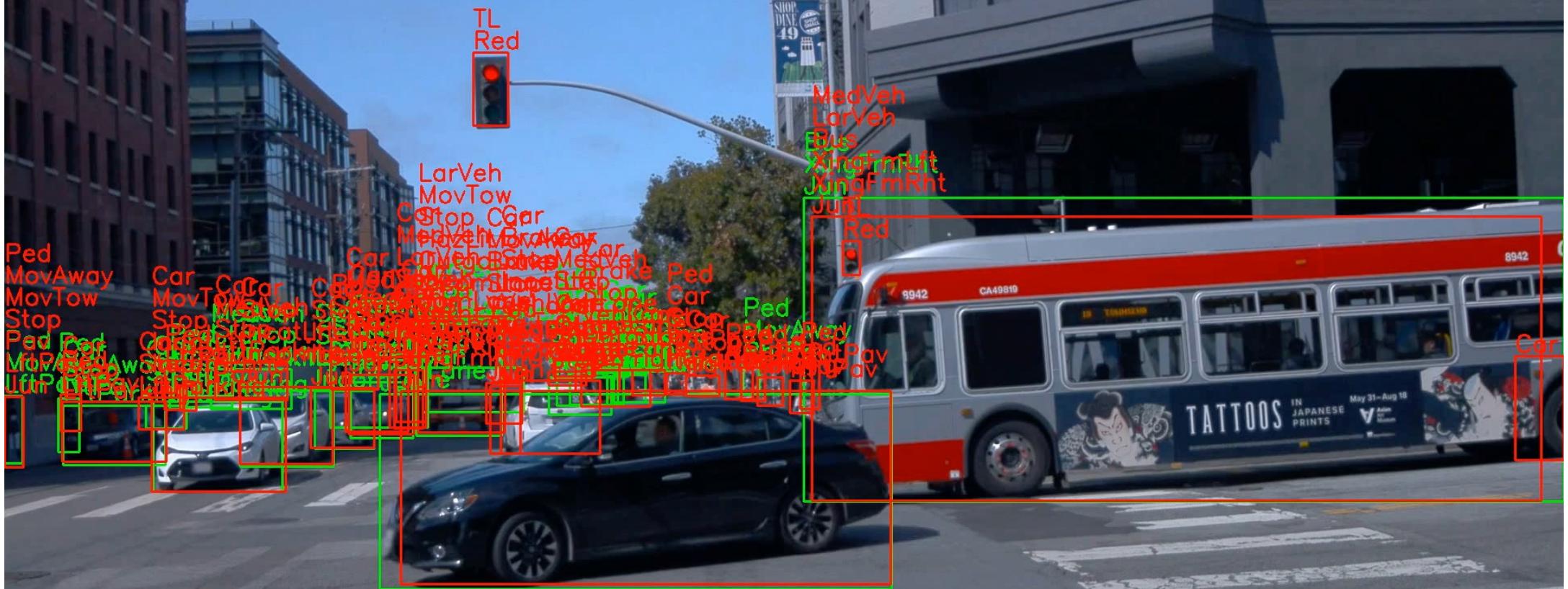
- Explainable models for black-box learning systems
 - symbolic rule extraction from neural networks
 - construction of logic circuits that simulate machine learning systems
- Hybrid systems (popular in NeSy)
 - neural pattern recognition followed by symbolic problem solving
 - verification of machine learning outputs by symbolic reasoning
 - neural pattern recognition enhanced/constrained with symbolic reasoning
- Embedding symbolic knowledge in vector spaces
 - knowledge graph embedding
 - program syntheses, neural/differentiable programming
 - **neuro-symbolic reasoning**: theorem proving, logic programming, answer set programming, abduction, etc.
 - large language models

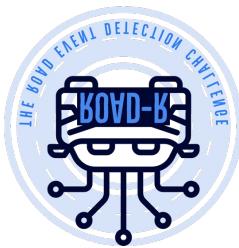
Waymo Open Dataset



<https://waymo.com/open/>

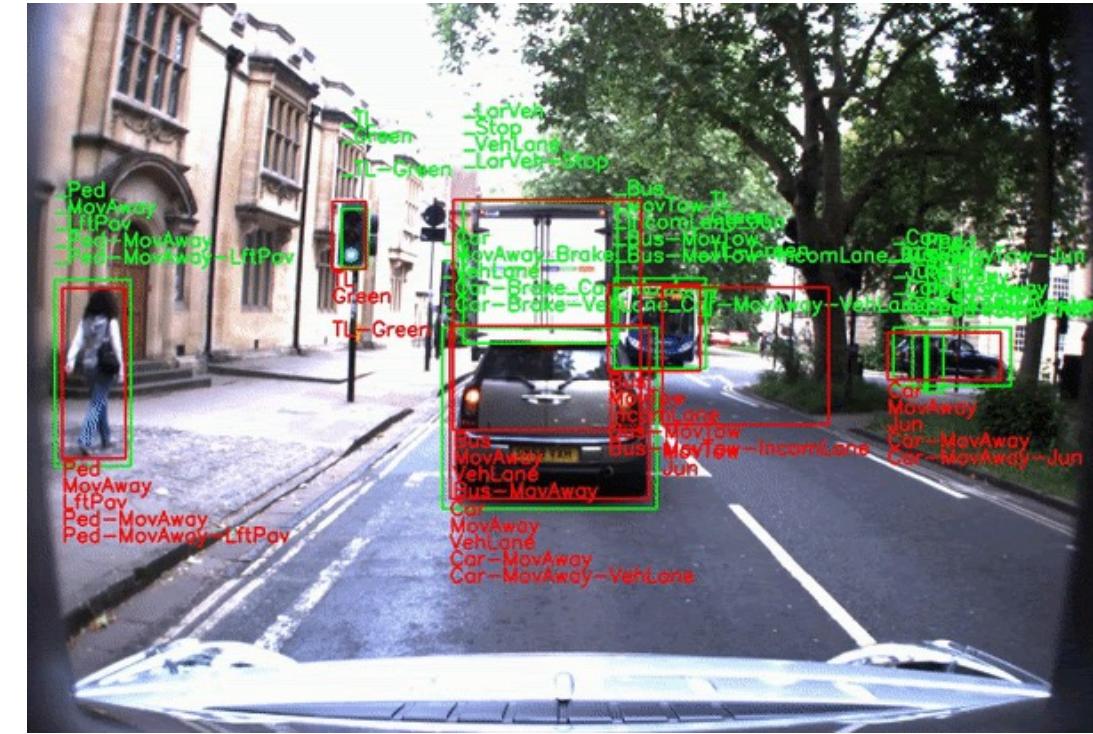
<div[](img/ROAD-Waymo.png)

https://doi.org/10.48550/arXiv.2411.01683



ROAD-R: Autonomous Driving with Requirements

- Multi-label Object Recognition
 - Agent detection
(*Pedestrian, Car, Cyclist, Emergency-Vehicle* etc.)
 - Action detection
(*Turning-right, Moving-away, Pushing-objects*, etc.)
 - Location detection
(*Vehicle-lane, Right-pavement, Bus-stop*, etc.)
- Requirements (= hard logical constraints)^[1]
 - *A traffic light cannot move.*
 - *A traffic light cannot be red and green at the same time.*
 - *If an agent is crossing, it is either a pedestrian or a cyclist.*
- Methods: Extend pre-trained recognition model, use Partial Weighted MaxSAT
- ROAD-R Challenge for NeurIPS 2023:
 - NII Team Results^[2]: Task 2 (supervised) **Won**, Task 1 (semi-supervised) **3rd**



<https://sites.google.com/view/road-r/dataset>

[1] Eleonora Giunchiglia, et al.: ROAD-R: the autonomous driving dataset with logical requirements. *Machine Learning*, 112 (2022)

[2] S. Moriyama, K. Watanabe, K. Inoue, A. Takemura: MOD-CL: Multi-label Object Detection with Constrained Loss. arXiv (2024)

Logical Constraints in ROAD-R (all hard constraints)

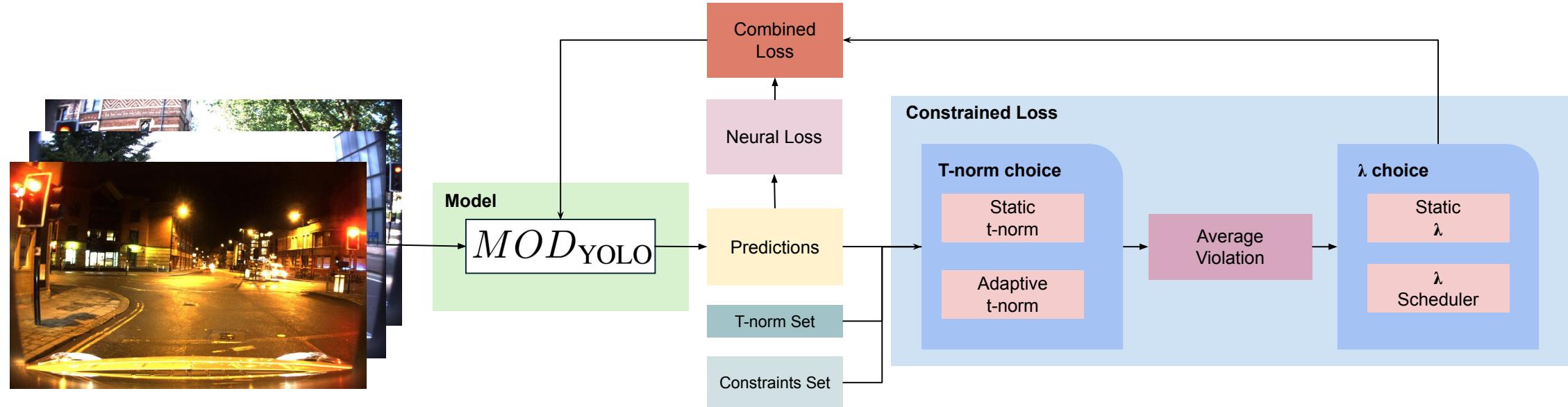
Requirements	Natural Language Explanations
{Ped, not PushObj}	If an agent pushes an object then it is a pedestrian
{PushObj, not Ped, MovAway, MovTow, Mov, Stop, TurLft, TurRht, Wait2X, XingFmLft, XingFmRht, Xing}	A pedestrian can only push objects, move away, etc.
{Ped, not XingFmLft, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}	Only pedestrians, cars, cyclists, etc. can cross from left
{Ped, not Wait2X, Cyc}	Only pedestrians and cyclists can wait to cross
{Ped, not Stop, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}	Only pedestrians, cars, cyclists, etc can stop
{Ped, not Mov, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}	Only pedestrians, cars, cyclists, etc can move
{Ped, not MovTow, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}	Only pedestrians, cars, cyclists, etc can move towards
{Ped, not MovAway, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}	Only pedestrians, cars, cyclists, etc can move away
{Ovtak, not EmVeh, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}	An emergency vehicle can only overtake, move away etc.
{EmVeh, not HazLit, Car, MedVeh, LarVeh, Bus, Mobike}	Only emergency vehicles, cars etc. can have hazards lights on
{Ovtak, not Bus, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}	A bus can only overtake, move away move towards etc.
{Ovtak, not MedVeh, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}	A medium vehicle can only overtake, move away, move towards etc.
{Ovtak, not LarVeh, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}	A large vehicle can only overtake, move away, move towards etc.
{OthTL, not Green, TL}	Only traffic lights and other traffic lights can give a green signal
{OthTL, not Amber, TL}	Only traffic lights and other traffic lights can give an amber signal
{OthTL, not Red, TL}	Only traffic lights and other traffic lights can give a red signal
{Ovtak, not Mobike, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}	A motorbike can only overtake, move away, move towards etc.
{Xing, not Cyc, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, TurLft, TurRht, Ovtak, Wait2X, XingFmLft, XingFmRht}	A cyclist can only cross, move away, move towards etc.
{Cyc, not Ovtak, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}	Only cyclists, medium vehicles, large vehicles etc. can overtake
{Cyc, not IncatRht, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}	Only cyclists, medium vehicles, large vehicles etc. can indicate right
{Cyc, not IncatLeft, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}	Only cyclists, medium vehicles, large vehicles etc. can indicate left
{Cyc, not Brake, MedVeh, LarVeh, Bus, Mobike, EmVeh, Car}	Only cyclists, medium vehicles, large vehicles etc. can brake
{Ovtak, not Car, MovAway, MovTow, Mov, Brake, Stop, IncatLeft, IncatRht, HazLit, TurLft, TurRht, XingFmRht, XingFmLft, Xing}	A car can only overtake, move away, move towards etc.
{Car, not TurRht, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}	Only cyclists, medium vehicles, large vehicles etc. can turn right
{Car, not TurLft, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh}	Only cyclists, medium vehicles, large vehicles etc. can turn left
{VehLane, OutgoLane, OutgoCycLane, IncomLane, IncomCycLane, Pav, LftPav, RhtPav, Jun, XingLoc, BusStop, Parking, TL, OthTL}	Every agent but traffic lights must have a position
{Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, TL, OthTL}	There must be at least an agent

Challenges:

1. Can these constraints help learning with small amount of training data?
2. How can hard constraints be 100% satisfied using neurosymbolic methods?

Adaptive Object Detection for ROAD-R/Waymo

(T. Eiter, N. Higuera, K. Inoue, S. Moriyama, *NeurIPS 2025*)

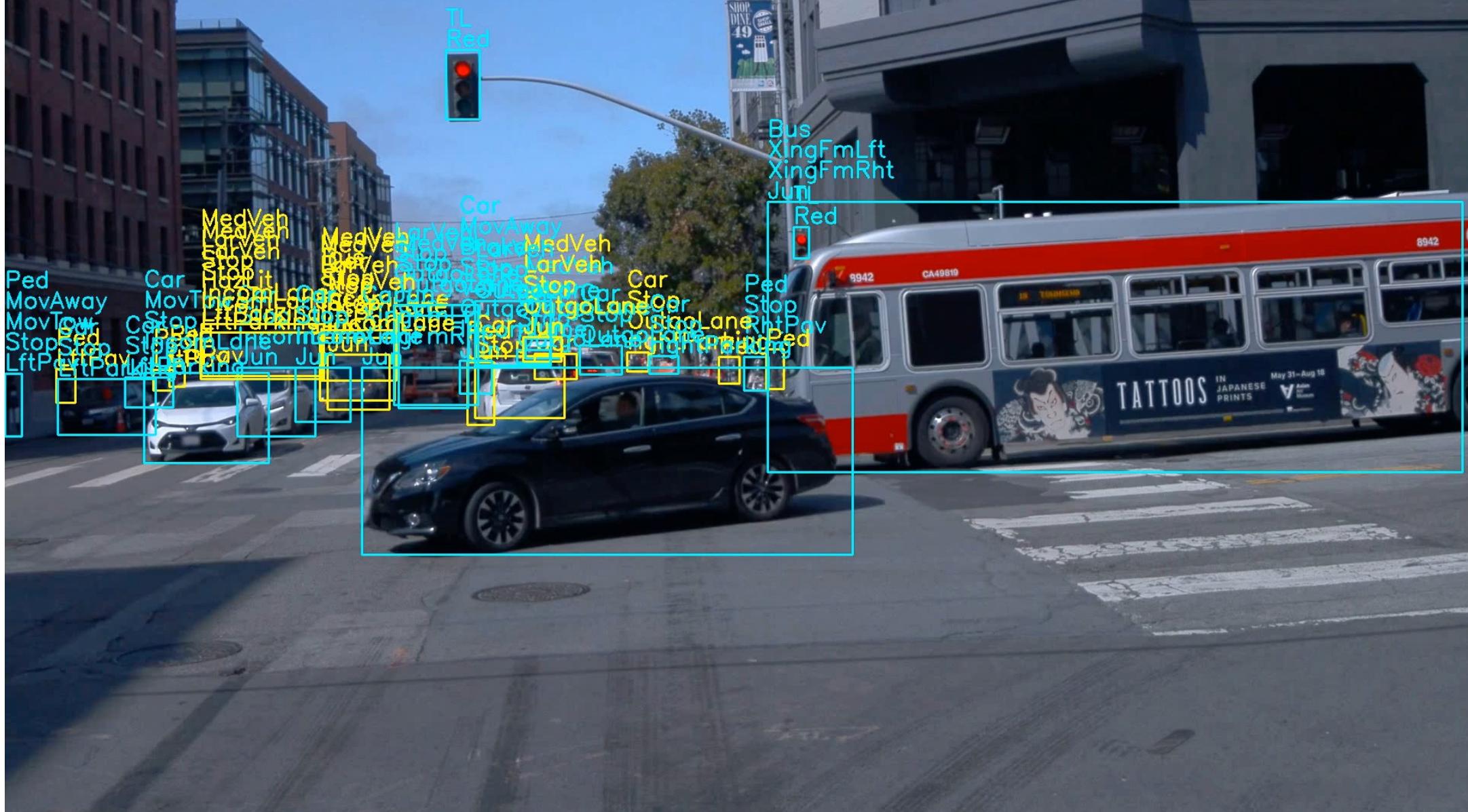


$$L = L_{neural} + \lambda \cdot L_{constrained}$$

- extends MOD-CL, the winning model of ROAD-R Challenge for NeurIPS 2023
- seamless integration of the constrained loss into object detection models
- adaptive selection of 12 t-norms of fuzzy logic in evaluating constrained loss
- dynamic change of λ (constraint satisfaction degree) by regularization scheduling

ROAD-Waymo: YOLO (vanilla, $\lambda = 0$)



\lambda = 100)

Outline

1. Introduction: Towards Trustworthy AI
2. Algebraic Approaches to Logic Programming
3. A Framework for Differentiable ASP
4. Tools for Differentiable ASP (unpublished)

Algebraic approach to logic programming

- Linear algebraic approaches to logic programming contribute to a step toward realizing robust and scalable logical inference.
 1. **Matrix-vector product methods** are used for **exact computation**, which can be scalable, and are the basis for the differentiable method.
 2. **Differentiable methods** are used for **approximate computation**, which can be robust to noise, and are connected to machine learning.
- Machine learning of logic programs can be realized by computing matrix/tensor representation of programs from input-output pairs.

Logical inference in vector spaces, I

—*Linear-algebraic methods* (Sakama, Inoue & Sato, 2021)

- **Common Principle:**
 - **Representation (encoding):** formulate logical formulas as vectors/matrices/tensors
 - **Computation:** apply linear algebraic operations on these elements

- P : (logic) program, constraints \Rightarrow matrix M_P
- I : assignment/interpretation \Rightarrow vector v_I
- $J = T_P(I) = \{ h \mid (h \leftarrow b_1 \& \dots \& b_m) \in P, \{b_1, \dots, b_m\} \subseteq I \}$: immediate consequences
 \Rightarrow vector $v_J = \theta(M_P v_I)$, where θ is a binary threshold function

- **Expected:**
 - High performance computation based on the sparsity of matrices (Nguyen, Inoue & Sakama, 2022)
 - Parallelism by GPU computation + partial evaluation (poss. exponential speedup)

Logical inference in vector spaces, II

— *Continuous/differentiable methods* (Sato & Kojima 2019)

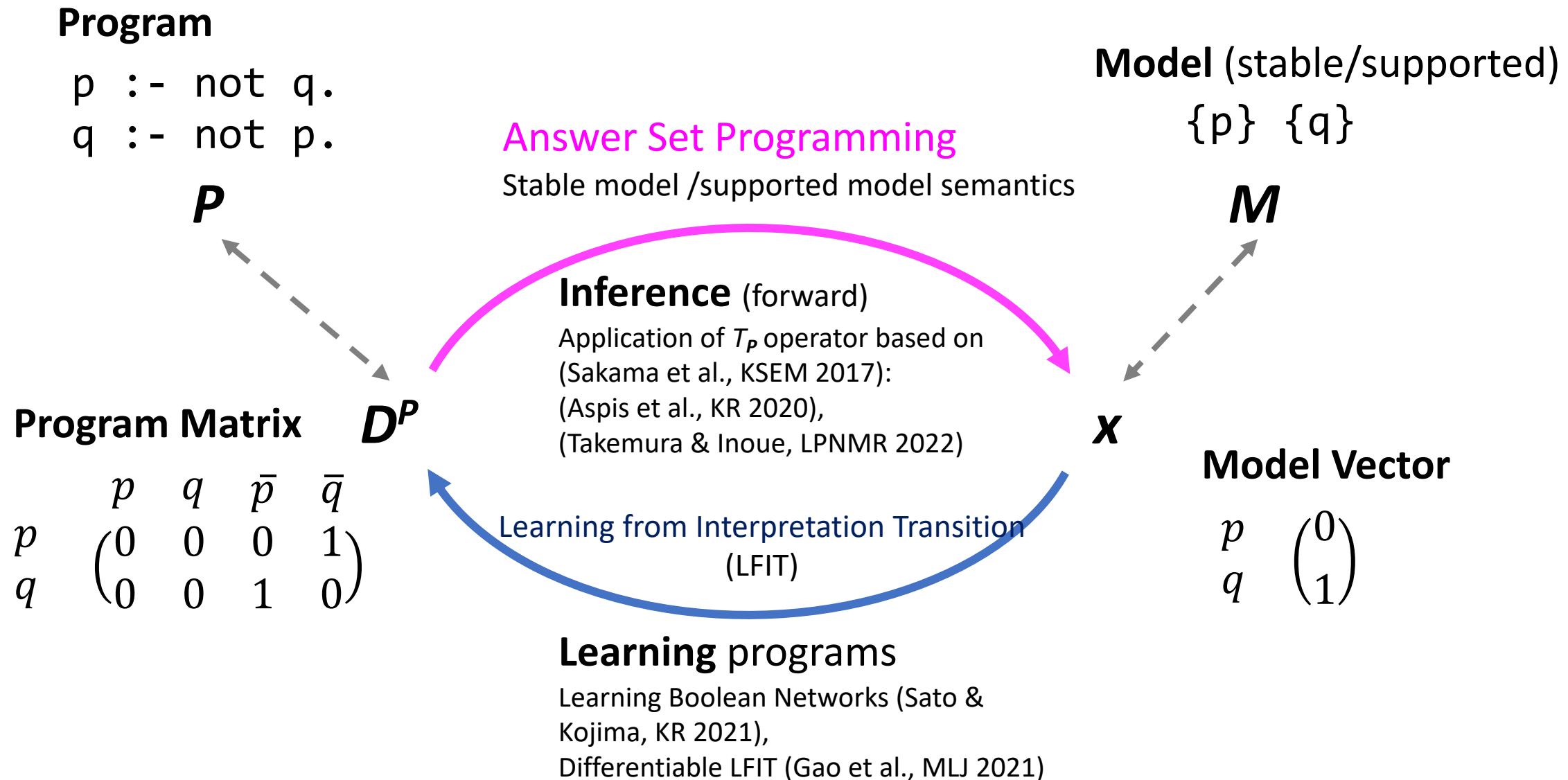
- **Common Principle:**
 - Set a loss function L
 - Formulate a problem as cost minimization of L with parameter tensor \mathbf{x}
 - Compute a minimum \mathbf{x} of L by SGD/Newton's method
 - if $L(\mathbf{x}) = 0$, then \mathbf{x} is a solution
 - Threshold \mathbf{x} to a binary tensor representing a logical solution
- **Expected:**
 - Robustness by continuity
 - Scalability by multi-core/GPU parallelism
 - **Smoothness to combine with neural systems**

$$\frac{\partial L(\mathbf{x})}{\partial \mathbf{x}}$$

Gradient of $L(\mathbf{x})$

➤ Sato T., Kojima R.: “Logical Inference as Cost Minimization in Vector Spaces”, *IJCAI 2019 International Workshops*, LNAI **12158**, pp.239-255 (2020).

Differentiable reasoning & learning in vector spaces



Differentiable computation of supported models

1. Embed a logic program P into a Program Matrix D^P

Program

P p :- p.
q :- not p.

{p} and {q} are supported, but only {q} is stable

Program Matrix

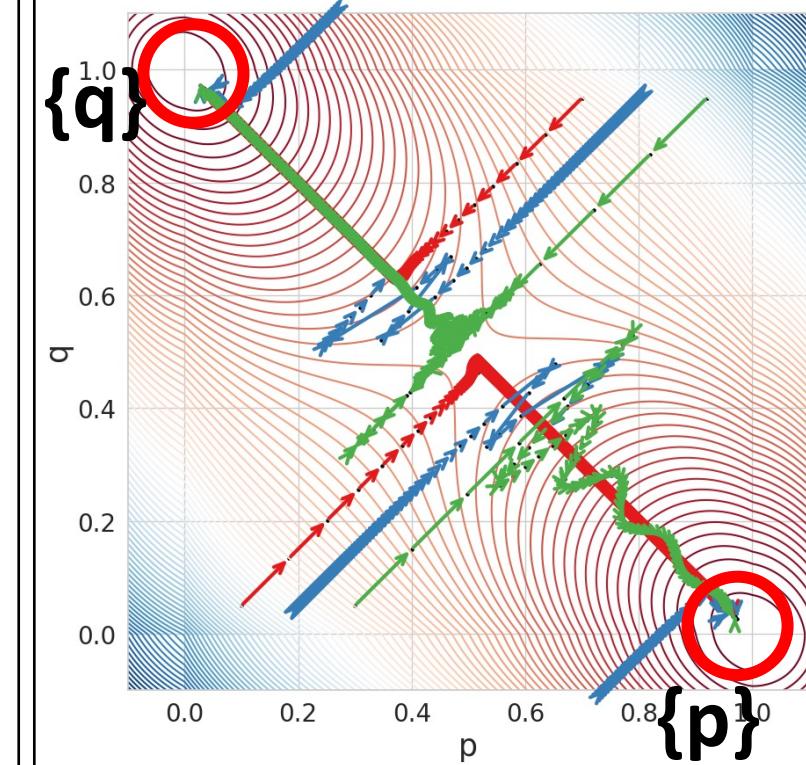
$$D^P = \begin{pmatrix} p & q & \bar{p} & \bar{q} \\ p & (1 & 0 & 0 \\ q & 0 & 0 & 1 \end{pmatrix}$$

Interpretation vector

$$x \quad \begin{pmatrix} p \\ q \end{pmatrix}$$

2. Define Loss function
w.r.t. continuous-valued
interpretation such that
 $Loss = 0$ corresponds to
an intended model of P

$$L(x) \longleftrightarrow \frac{\partial L(x)}{\partial x}$$



Differentiable computation of **stable** models [this talk]

1. Embed a logic program P into a Program Matrix D^P

Program

P p :- p.
q :- nc

{p} and {q} are supported, but only {q} is stable

Program Matrix

$$D^P \quad \begin{matrix} p & q & \bar{p} & \bar{q} \\ p & \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \\ q \end{matrix}$$

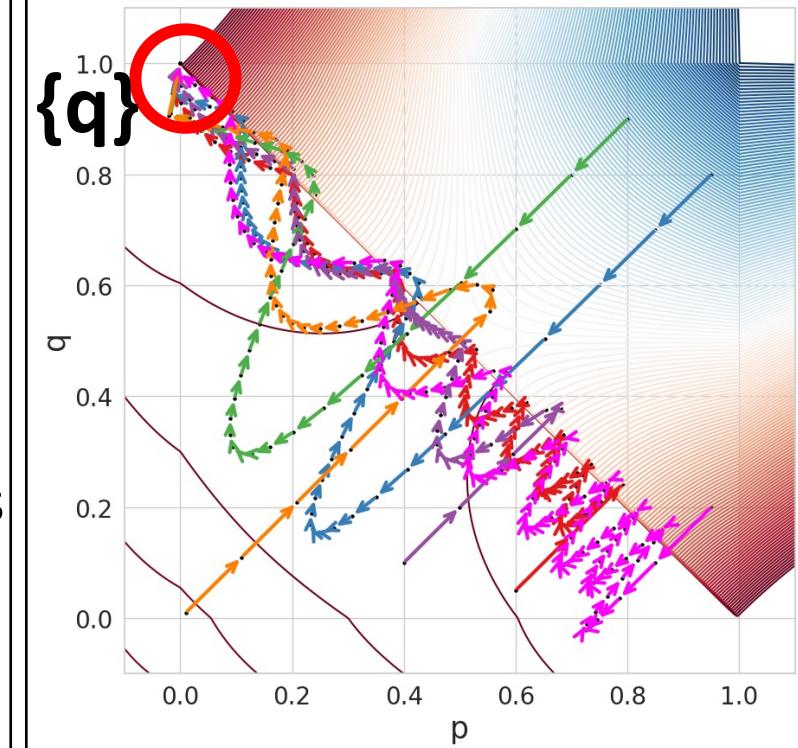
Interpretation vector

$$x \quad \begin{pmatrix} p \\ q \end{pmatrix}$$

2. Define Loss function
w.r.t. continuous-valued
interpretation such that
 $Loss = 0$ corresponds to
models of P

Semantically inspired checks

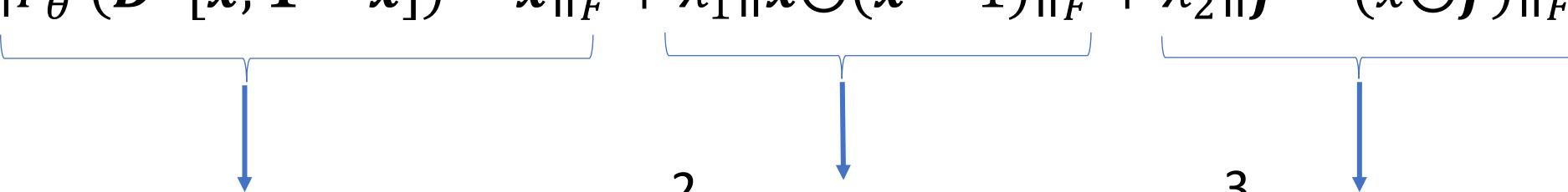
- ✓ Supported model
- ✓ Unfounded set
- ✓ Loop formulas



Loss function (is exactly 0 when x is a supported model)

- Given

- D^P : program matrix, shape: $[|\text{Heads}|, |\mathbf{B}_{P+}|]$ $\#|\mathbf{B}_{P+}| = 2 \cdot |\text{Heads}|$
- x : candidate interpretation vector, shape: $[|\mathbf{B}_{P+}|, 1]$
- $\|x\|_F$: Frobenius norm (2-norm)
- F_θ : thresholding function (parameterized θ -thresholding)

$$L(x) = \frac{1}{2} \{ \|F_\theta(D^P[x; 1 - x]) - x\|_F^2 + \lambda_1 \|x \odot (x - 1)\|_F^2 + \lambda_2 \|f - (x \odot f)\|_F^2 \}$$


1. When m is a supported model, $T_P(m)=m$
When this term is 0, we have $F_\theta(D^P x) = x$
2. Pruning fractional interpretations
(0 if all elements are 0 or 1)
3. Penalty for 'forgetting' facts
(0 if assignments on facts do not change)

Logical reasoning realized in vector spaces (in our group)

first-order (FO)
deduction (Sato, **TPLP 2017**)

FO abduction (Sato,
Inoue & Sakama,
IJCAI 2018)

logic programming (LP)
fixpoint computation
(Sakama, Inoue & Sato,
KSEM 2017; AMAI 2021)

Sparse method for LP
(Nguyen, Inoue &
Sakama, **ICLP 2021; NGC 2022**)

ASP (supported
models) (Sato,
Inoue & Sakama,
ICAART 2020)

LP abduction (Nguyen,
Inoue & Sakama, **ICTAI 2021; PADL 2023; ICTAI 2024**)

differentiable ASP
(supported models)
(Takemura & Inoue,
LPNMR 2022; ECAI 2024)

differentiable ASP
(stable models)
(Sato, Takemura &
Inoue, arXiv 2023;
NSAI 2025)

SAT (MatSat)
(Sato & Kojima,
PoS 2021)

Boolean network
learning (Sato &
Kojima, **KR 2021**)

differentiable LFIT
(transformer-based)
(Phua & Inoue, **ILP 2019; ILP 2021; NeSy 2024**)

differentiable LFIT
(matrix learning)
(Gao, Wang, Cao &
Inoue, **MLJ 2022**)

induction of FO LP
(Gao, Inoue, Cao &
Wang, **IJCAI 2022; AIJ 2024**)

DNF learning (Sato
& Inoue, **MLJ 2023**)

differentiable rule
learning from real-valued
time-series data (Gao,
Inoue, Cao, Wang & Yang,
ICLR 2025)

Similarities between minimization tasks

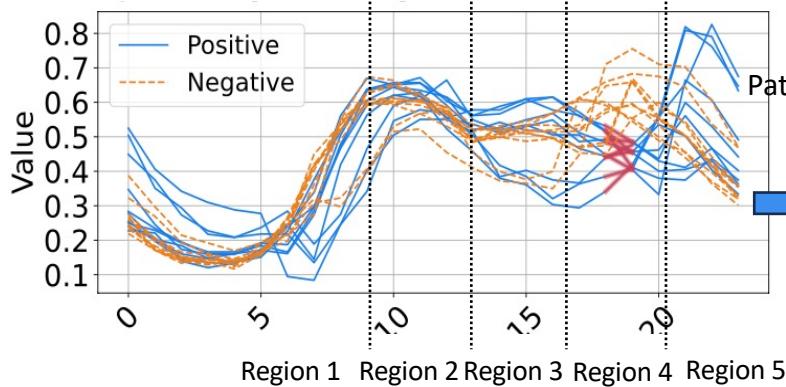
task	minimize ...	X / x is
Matrix decomposition	$\ X - \mathbf{A} \mathbf{B}\ _F^2$	0-1 matrix 'relation'
Relation abduction [Sato+ 2018]	$\ R_1 - R_3 \mathbf{X}\ _F^2$	0-1 matrix 'relation'
Satisfiability [Sato & Kojima 2018]	$\ 1 - t(Q[\mathbf{x}; 1 - \mathbf{x}])\ _F^2$	0-1 vector 'assignment'
Supported model [Takemura & Inoue 2022]	$\ t(P[\mathbf{x}; 1 - \mathbf{x}]) - \mathbf{x}\ _F^2$	0-1 vector 'interpretation'
Supported model (N.B.: This term does not check for unfounded sets)	$\ t(D^T t'(P[\mathbf{x}; 1 - \mathbf{x}])) - \mathbf{x}\ _F^2$	0-1 vector 'interpretation'

Sato, T., Inoue, K., & Sakama, C. (2018). Abducting Relations in Continuous Spaces. IJCAI 18 <https://doi.org/10.24963/ijcai.2018/270>

Sato, T., & Kojima, R. (2020). Logical Inference as Cost Minimization in Vector Spaces. IJCAI 19 Workshops https://doi.org/10.1007/978-3-030-56150-5_12

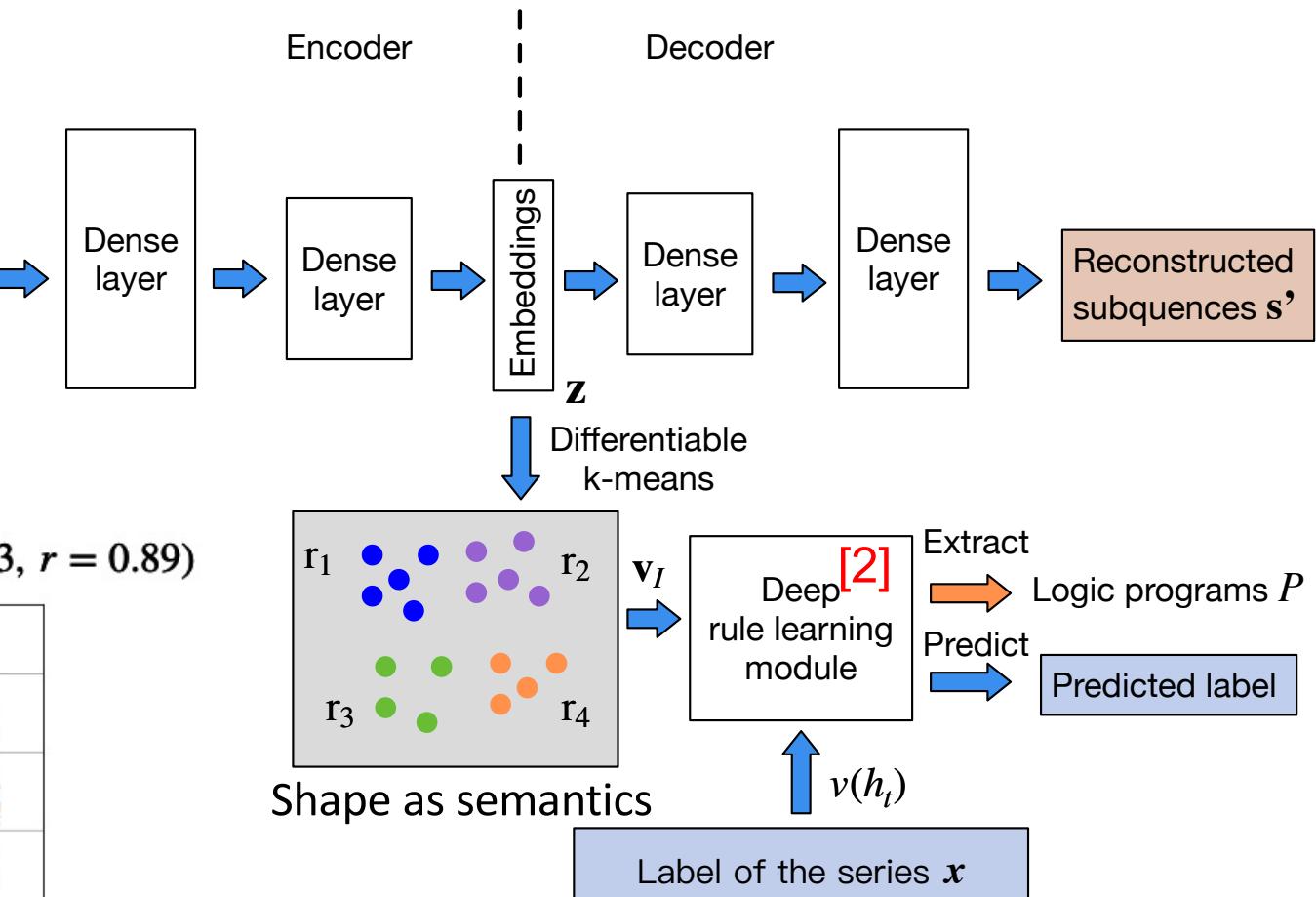
Takemura, A., & Inoue, K. (2022). Gradient-Based Supported Model Computation in Vector Spaces. LPNMR 2022.

Differentiable rule induction from raw time series data^[1]

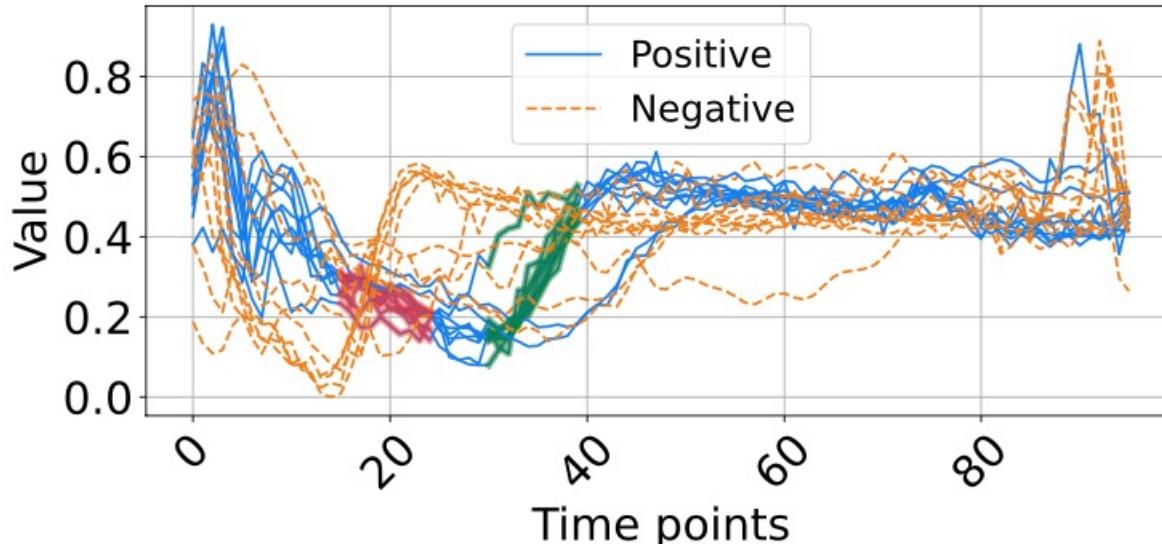


Patching

All
subsequences s
of a series x



$$h_p \leftarrow \text{pattern}_2(X) \wedge \text{region}_1(X) \wedge \text{pattern}_1(Y) \wedge \text{region}_2(Y) \quad (p = 0.83, r = 0.89)$$



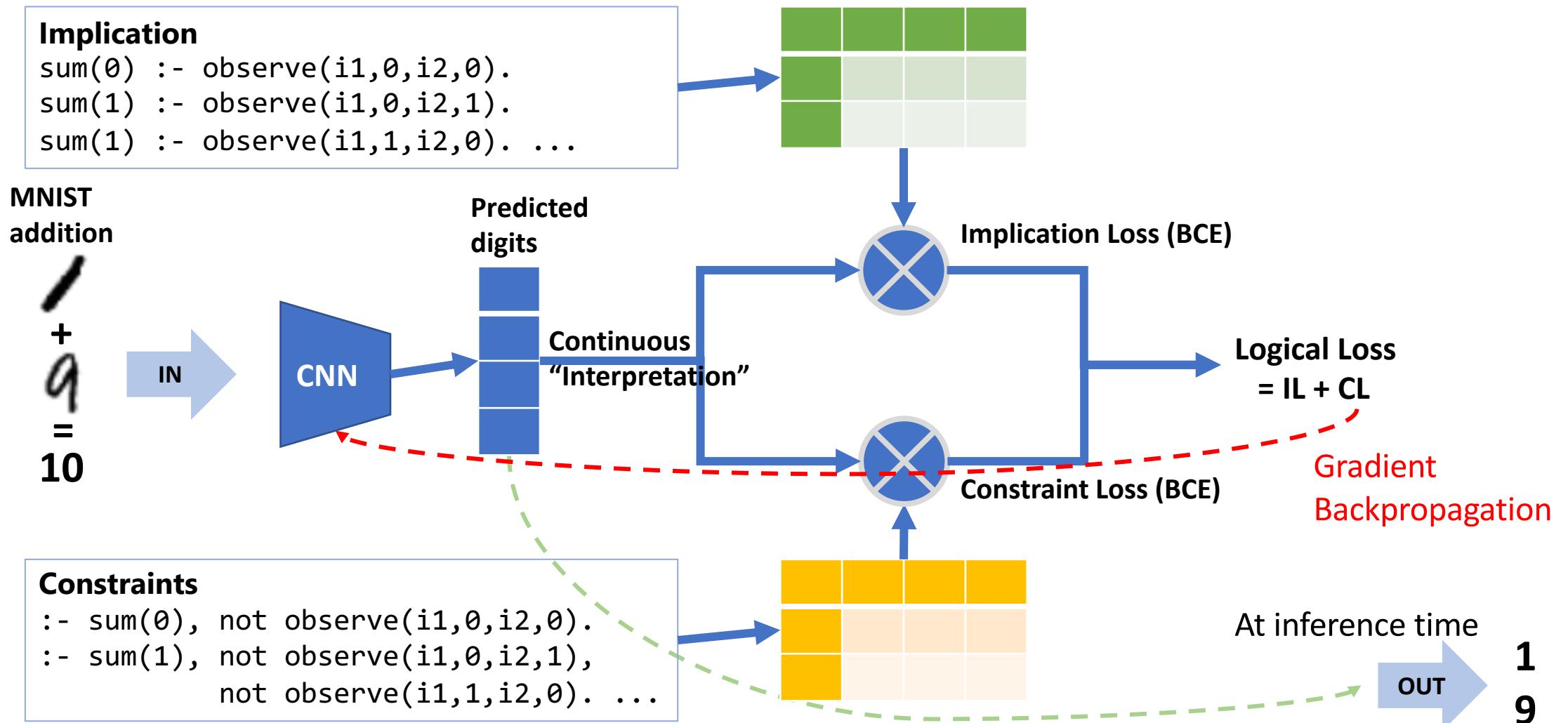
[1] K. Gao, K. Inoue, Y. Cao, H. Wang, F. Yang: *ICLR 2025*

[2] K. Gao, K. Inoue, Y. Cao, H. Wang: *IJCAI 2022, AIJ 2024*

Application viewpoints

- We have shown that logical computation can be transformed to numeric computation using algebraic representation.
- The methods have some effects on purely symbolic domains, e.g., random instances whose solving heuristics are not well-known.
- But they are more effective on in uncertain environments, in which errors often occur. Then we can construct robust reasoning systems.
- Other expected domains exist on such interfaces between low-level perception and high-level reasoning in neurosymbolic fields.

Loss functions for NeSy tasks with embedded logic programs



Outline

1. Introduction: Towards Trustworthy AI
2. Background: Algebraic Approaches to Logic Programming
3. Main: A Framework for Differentiable ASP
4. Supplementary: Tools for Differentiable ASP (unpublished)

Answer Set Programming (ASP)

- A declarative approach to combinatorial problems
- A problem is specified by a logic program P
- A solution (answer set) is a set of ground atoms representing a stable model of P
- There are many applications: planning, diagnosis, robotics, NLP, KG etc
- Potassco project (<https://potassco.org/>) has been main driving force in developing ASP systems
- In neuro-symbolic AI, ASP has been used for symbolic representation and reasoning

Stable model computation

- Stable model semantics [Gelfond & Lifschitz 1988]
 - Smodels [Niemelä & Simons 1997]: bottom-up backtracking search
- SAT solver based
 - ASSAT [Lin & Zhao 2004]: incremental loop formula test
 - Cmodels [Lierler 2005]: disjunctive adaption of ASSAT
- CDNL (conflict driven nogood learning)
 - clasp [Gebser+ 2007]: generalization of CDCL
- Neural combined approach
 - ∂ ASP/SAT [Nickles 2018]: ASP solver + decision literal by cost function
 - NeurASP [Yang+ 2020]: ASP solver + (neural atoms + soft-max) + NN
 - SLASH [Skryagin+ 2021]: similar to NeurASP + probabilistic circuit
- Supported model computation by matrix encoding
 - [Aspis+ 2020]: MD condition + cost function (quadratic polynomial, sigmoid)
 - [Takemura & Inoue 2022]: SD condition + cost function (quadratic polynomial, ReLU-like)
- **No end-to-end approach to stable model computation exists**

End-to-end ASP

- We reformulate stable model computation for propositional normal logic programs in vector spaces and compute stable models by minimizing a cost function
- Unlike [Aspis+ 2020] and [Takemura & Inoue 2022], which compute **supported models**, we compute **stable models** by
 - incorporating **constraints** and **loop formulas**
 - imposing **no restriction** on the syntactic form of programs such as the *MD condition* [Sakama, Inoue & Sato 2017] and the *SD condition* [Sakama, Inoue & Sato 2021]
- We compute a root u of a non-negative cost function L^{Su} by Newton's method
 - L^{Su} is derived from *strong disjunction* $\min(x+y, 1)$ in Łukasiewicz (real valued) logic:
 - $\nu(x \oplus y) = \min(1, \nu(x) + \nu(y)) = \min_1(\nu(x) + \nu(y))$

Matricized program $P = (C, D)$

- $P = \begin{cases} p \coloneqq q \& \sim r. \\ p \coloneqq \sim q \& s. \\ q. \end{cases}$

$$\text{comp}(P) = \begin{cases} p \Leftrightarrow (q \& \sim r) \vee (\sim q \& s) \\ q \Leftrightarrow () : \text{empty body} \\ r \Leftrightarrow \{\} : \text{empty disjunction} \\ s \Leftrightarrow \{\} : \text{empty disjunction} \end{cases}$$

- $C = \begin{array}{c|cc|cc|cc|cc|cc} & \underline{p} & \underline{q} & \underline{r} & \underline{s} & \underline{\sim p} & \underline{\sim q} & \underline{\sim r} & \underline{\sim s} \\ \hline C_{pos} & \boxed{0 & 1 & 0 & 0} & \boxed{0 & 0 & 1 & 0} \\ C_{neg} & \boxed{0 & 0 & 0 & 1} & \boxed{0 & 1 & 0 & 0} \\ & \boxed{0 & 0 & 0 & 0} & \boxed{0 & 0 & 0 & 0} \\ & \boxed{0 & 0 & 0 & 0} & \boxed{0 & 0 & 0 & 0} \\ & \boxed{0 & 0 & 0 & 0} & \boxed{0 & 0 & 0 & 0} \\ & \boxed{0 & 0 & 0 & 0} & \boxed{0 & 0 & 0 & 0} \end{array}$

- $D = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

- p's 1st rule has body $q \& \sim r$
- p's 2nd rule has body $\sim q \& s$
- q's 1st rule has empty body (unit clause)
- r has no rule
- s has no rule

- p has two rules $C(1,:) \vee C(2,:)$
- q has one rule $C(3,:)$
- r has no rule
- s has no rule

Supported model

- Given a normal logic program $P = (C, D)$, compute P 's supported models s in vector spaces
- s is possibly a stable model of P
- Put $C = [C^{pos} \ C^{neg}]$, where C^{pos} : positive part of C , C^{neg} : negative part of C
- Let s_i be a binary vector as interpretation I for P
 $M = \mathbf{1} - \min_1(C^{pos}(\mathbf{1} - s_i) + C^{neg}s_i)$: truth value of rule bodies by s_i ,
 $dS = \min_1(DM)$: truth value of disjunctive rule bodies by s_i ,
- $dS = s_i$ iff s_i is a model of $\text{comp}(P)$
iff s_i is a supported model of P

Cost function L^{Su} and its Jacobian J_L^{Su}

- $dS = \min_1(DM)$, $M = \mathbf{1} - \min_1(C^{pos}(\mathbf{1} - s_I) + C^{neg}s_I)$
- $L^{Su} = (1/2) \cdot \| dS - s_I \|^2 + (1/2) \cdot \ell_2 \cdot \| s_I \odot (\mathbf{1} - s_I) \|^2 \quad (\ell_2 > 0)$
- Let $E = dS - s_I$ and $F = s_I \odot (\mathbf{1} - s_I)$. Then,
- $L^{Su} = (1/2) \cdot \| E \|^2 + (1/2) \cdot \ell_2 \cdot \| F \|^2$
- $L^{Su} = 0$ iff $dS = s_I$ and s_I is binary
iff s_I is a supported model of $P = (C, D)$
- $$J_L^{Su} = \left(\frac{\partial(E \cdot E)}{\partial s_I} \right) + \ell_2 \cdot \left(\frac{\partial(F \cdot F)}{\partial s_I} \right)$$
$$= (C^{pos} - C^{neg})^\top [N \leq 1] \odot (D^\top [(DM) \leq 1] \odot E)) - E$$
$$+ \ell_2 \cdot ((\mathbf{1} - 2 \cdot s_I) \odot F), \text{ where } N = C^{pos}(\mathbf{1} - s_I) + C^{neg}s_I$$

Constraints and L^c

- $\hat{C} = [\hat{C}^{pos} \hat{C}^{neg}]$ represents a set of (integrity) constraints

- Example: $C = \begin{cases} :- a \& \sim b. \\ :- b \& \sim c. \end{cases}$

- $\hat{C} = \begin{bmatrix} a & b & c & \sim a & \sim b & \sim c \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{l} \text{---} \\ \text{---} \\ \hat{C}^{pos} \quad \hat{C}^{neg} \end{array} \quad \begin{array}{l} :- a \& \sim b. \\ :- b \& \sim c. \end{array}$

- $L^c = (1 \bullet (1 - \min(N_{\hat{C}}, 1))) = |\text{violated constraints}|$
where $N_{\hat{C}} = \hat{C}^{pos} \cdot (1 - s_i) + \hat{C}^{neg} \cdot s_i = |\text{false literals in constraint evaluation}|$
- $L^c = 0$ iff every conjunct in the body is evaluated false (constraint is satisfied)
- $J_{L^c} = (\hat{C}^{pos} - \hat{C}^{neg})^T [N_{\hat{C}} < 1]$

Computing supported models satisfying constraints

- Given a program $P = (C, D)$ and constraints \hat{C} , we compute supported models by minimizing $L^{Su+c} = L^{Su} + \ell_3 \cdot L^c$ to zero
 - $L^{Su} = (1/2) \cdot \| \min_1(DM) - s_I \|_2^2 + (1/2) \cdot \ell_2 \cdot \| s_I \odot (1 - s_I) \|_2^2 \quad (\ell_2 > 0)$
 - $L^c = (\mathbf{1} \bullet (\mathbf{1} - \min(N_{\hat{c}}, 1)))$
- We use Newton's method with Jacobian $J_L^{Su+c} = J_L^{Su} + \ell_3 \cdot J_L^c$
$$J_L^{Su} = (C^{pos} - C^{neg})^T [N \leq 1] \odot (D^T ([(D \cdot M) \leq 1] \odot E)) - E + \ell_2 (s_I \odot (1 - s_I) \odot (1 - 2 \cdot s_I))$$
$$J_L^c = (\hat{C}^{pos} - \hat{C}^{neg})^T [N_{\hat{c}} < 1]$$
- For stable models, we compute supported models from random initialization until a stable models is found

Minimization algorithm

- Input: metricized program $P = (C, D)$, constraint matrix \hat{C}
Output: binary vector s_I^* such that $L^{Su+c}(s_I^*) = 0$
- 1: **initialize** s_I randomly
- 2: for $i = 1$ to max_try
 - for $j = 1$ to max_itr
 - threshold** optimally s_I to binary s_I^* and compute error = $J^{Su+c}(s_I^*)$;
 - if (error = 0) break ;
 - compute $L^{Su+c} = L^{Su} + \ell_3 \cdot L^c$ and $J_L^{Su+c} = J_L^{Su} + \ell_3 \cdot J_L^c$;
 - $s_I = s_I - \gamma (L^{Su+c} / \| J_L^{Su+c} \|_2^2) J_L^{Su+c}$;
 - endfor
 - if (error = 0) break ;
 - perturbate** s_I ;
- endfor

3-coloring of G0

- Consider a 3-coloring problem of graph G0:
Nodes = {a, b, c, d}, color = one-of(red, blue, green)
- Program P : one-of(a_1, a_2, a_3) .. one-of(d_1, d_2, d_3)

```

a1 :- ~a2, ~a3.  a2 :- ~a1, ~a3.  a3 :- ~a1, ~a2.
b1 :- ~b2, ~b3.  b2 :- ~b1, ~b3.  b3 :- ~b1, ~b2.
c1 :- ~c2, ~c3.  c2 :- ~c1, ~c3.  c3 :- ~c1, ~c2.
d1 :- ~d2, ~d3.  d2 :- ~d1, ~d3.  d3 :- ~d1, ~d2.

```

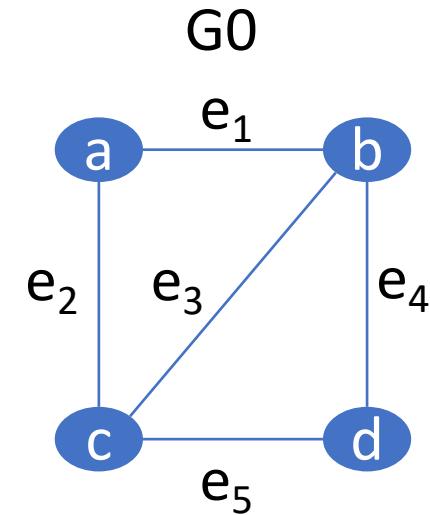
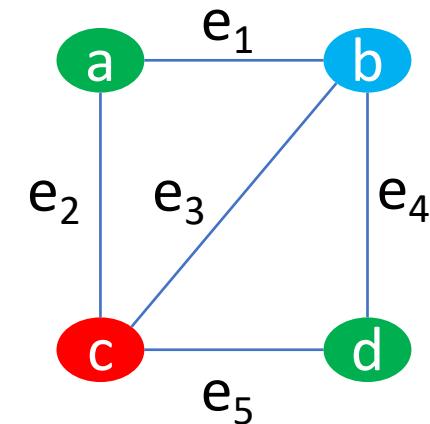
- Constraints C (two nodes connected by an edge must have different colors)

```

:- a1, b1.  :- a2, b2.  :- a3, b3.      (by e1)
:- a1, c1.  :- a2, c2.  :- a3, c3.      (by e2)
:- b1, c1.  :- b2, c2.  :- b3, c3.      (by e3)
:- b1, d1.  :- b2, d2.  :- b3, d3.      (by e4)
:- d1, c1.  :- d2, c2.  :- d3, c3.      (by e5)

```

$$\begin{aligned}
\mathbf{u} &= [a1 \ a2 \ a3 \ b1 \ b2 \ b3 \ c1 \ c2 \ c3 \ d1 \ d2 \ d3]^T \\
&= [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1]^T
\end{aligned}$$



Matrix encoding

- Program $P = (C, D)$

$$D = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \begin{array}{l} :a \\ :b \\ :c \\ :d \end{array}$$

every atom has a single rule

$$C = \begin{array}{l} a: \\ b: \\ c: \\ d: \end{array} \begin{pmatrix} a_1 & a_2 & a_3 & b & c & d & \sim a & \sim b & \sim c & \sim d \end{pmatrix}$$

$$H = \begin{pmatrix} 0 & H & H & H & H \end{pmatrix}$$

$$C^{pos} \quad C^{neg}$$

- Constraint \hat{C}

$$\hat{C} = \begin{pmatrix} 0 & I & I & I & I & I & I & I & I & I \end{pmatrix}$$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\hat{C}^{pos} \quad \hat{C}^{neg}$$

Computing performance

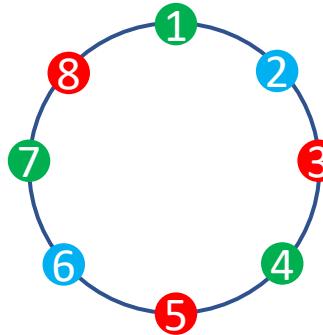
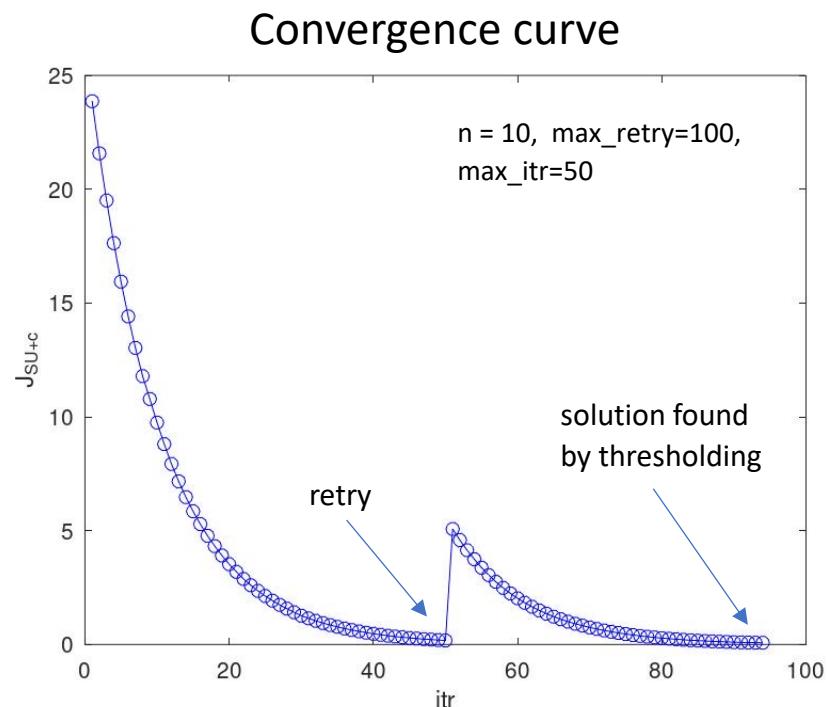
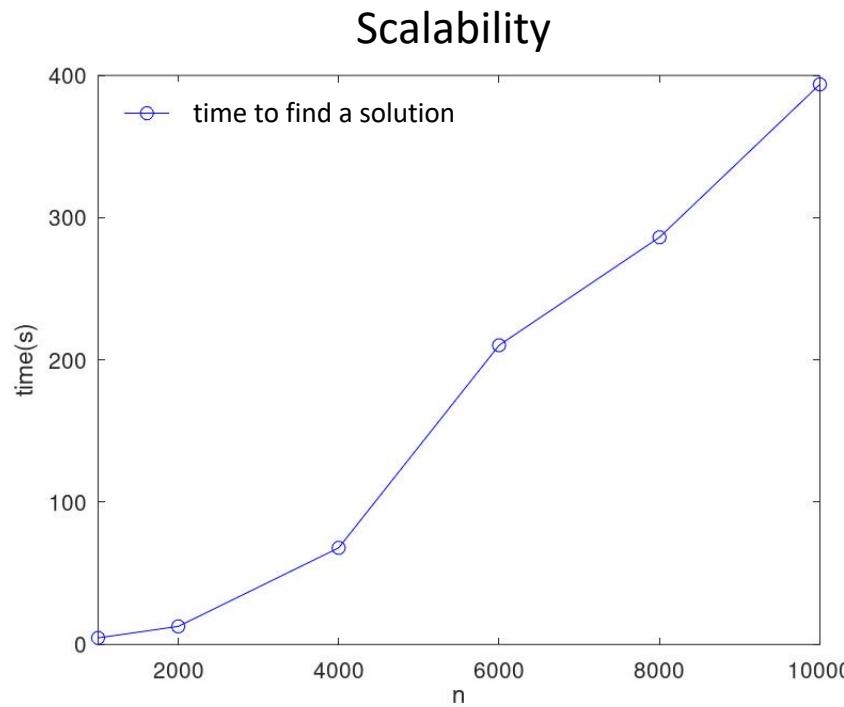
average over 10 runs	time(s)	#solution /10 trials
Su	6.7 (0.7)	5.2 (0.9)
GL reduct	8.1 (0.7)	4.7 (0.7)

1 trial: max_try = 20, max_itr = 50, $\ell_2 = \ell_3 = 0.1$

Programs are run on a PC with Intel(R) Core(TM) i7-10700@2.90GHz CPU with 26GB memory

3-coloring of cycle graph

- Consider a 3-coloring problem of cycle graph:
Nodes = {1,..,n}, color = one-of(red, blue, green)
- 3n atoms: $D(3n \times 3n)$, $C(3n \times 6n)$, $\hat{C}(3n \times 6n)$
- #3-coloring_of_cycle(n) = $2^n + 2 \cdot (-1)^n$



Hamiltonian cycle problem

- Hamiltonian cycle (HC): a round trip visiting every city once
- Two types of encoding possible
 - non-tight normal logic program + constraint [Niemela 1999], [Lin+ 2003]
 - **tight** normal logic program + constraint (none?)
- We modify the SAT encoding of HC by [Zhou 2020]
 - $U(j,q) = 1$: node j is in HC and visited at time q ($1 \leq i, q \leq K$)
 - $H(i,j) = 1$: edge $i \rightarrow j$ is in HC
 - (1) $\text{one-of}(H(i,j_1) \dots H(i,j_k))$: outgoing edges are exclusive ($1 \leq i \leq K$)
 - (2) $\text{one-of}(H(i_1,j) \dots H(i_k,j))$: incoming edges are exclusive ($1 \leq i \leq K$)
 - (3) $H(1,j) \Rightarrow U(j,2)$: redundant and removed
 - (4) $H(i,1) \Rightarrow U(i,K)$: if $i \rightarrow 1$ exists, i is visited at time K ($2 \leq i \leq K$)
 - (5) $H(i,j) \& U(i,q-1) \Rightarrow U(j,q)$: if $i \rightarrow j$ exists and node i is visited at time $q-1$, node j is visited at time q ($1 \leq i, j \leq K, 2 \leq q \leq K$)
 - (6) $\text{one-of}(U(i,1) \dots U(i,K))$: node i is visited exactly once ($1 \leq i \leq K$)
 - (7) $U(1,1)$: node 1 is visited at time 1 (starting node)

↑
transformation to
inherently tight program

Hamiltonian cycle problem (cont'd)

- We solve the HC problem for G1
- We introduce 72 atoms for $H(i,j)$ and $U(j,q)$ and encode the HC problem as follows:

(1) one-of($H(i,j_1) \dots H(i,j_k)$)	tight program (D Q)
(4) $H(i,j) \wedge U(i,q-1) \Rightarrow U(j,q)$	
(7) $U(1,1)$	

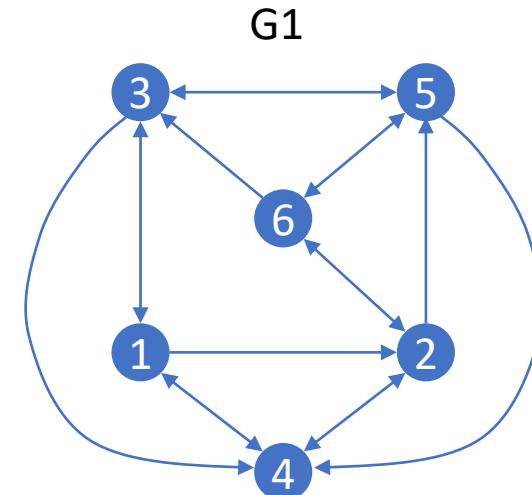
(2) one-of($H(i_1,j) \dots H(i_k,j)$)	constraint ($\ell_3 \cdot J^C$)
(5) $H(i,1) \Rightarrow U(i,K)$	
(6) one-of($U(i,1) \dots U(i,K)$)	

$H(1,2) :- \neg H(1,3) \wedge \neg H(1,4).$

$U(2,4) :- (U(1,3) \wedge H(1,2)) \vee \dots \vee (U(6,3) \wedge H(6,2)).$

Average time to find a HC over 10 trials (octave on PC: 2.90 GHz 32GB)

ℓ_3	0.02	0.05	0.1	0.15	0.2
time(s)	5.2(6.6)	4.5(4.4)	5.1(4.3)	8.2(8.6)	6.2(7.0)



from A User's Guide to gringo, clasp, clingo, and iclingo ver.3, 2010

There are five HCs:

1 -> 2 -> 6 -> 3 -> 5 -> 4 -> 1

1 -> 2 -> 6 -> 5 -> 3 -> 4 -> 1

1 -> 3 -> 5 -> 6 -> 2 -> 4 -> 1

1 -> 4 -> 2 -> 5 -> 6 -> 3 -> 1

1 -> 4 -> 2 -> 6 -> 5 -> 3 -> 1

Loop formulas LF

- We can compute solely **stable models** s , of a program P by matricizing the Lin-Zhao theorem [Lin and Zhao 2004]:
 s , is a stable model of P iff $s \models \text{comp}(P)$ and $s \models LF$
- Loop formulas LF :
 - Loop $S = \{p_1, \dots, p_k\}$: atoms such that there is a path from p_i to p_j and vice versa in the positive dependency graph of P ; p has a self-loop when $S = \{p\}$
 - $\text{Body}(p) = G_1 \vee \dots \vee G_j$ where rule $(p :- G_i) \in P$ and $G_i^+ \text{ (positive literals of } G_i, \text{ possibly empty) } \cap S = \emptyset \text{ (} 1 \leq i \leq j\text{)}$
when no such G_i exists, $\text{Body}(p)$ is false
 - $LF_{\text{OR}}(S)$: OR-type loop formula associated with S
 $= (p_1 \vee \dots \vee p_k) \rightarrow (\text{Body}(p_1) \vee \dots \vee \text{Body}(p_k))$
 - LF : the set of all loop formulas for $P = \{ LF_{\text{OR}}(S) \mid S \text{ is a loop in } P \}$
- LF says every loop has an exit that calls atoms outside the loop

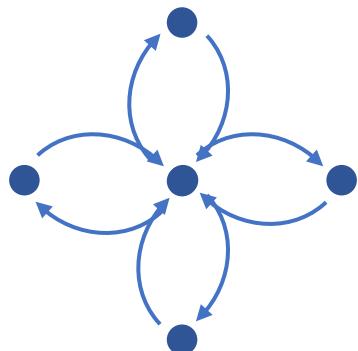
AND-type loop formula

- OR-type Loop formulas in the Lin-Zhao theorem [Li and Zhao 2004] can be replaced by AND-type ones [Ferraris, Lee & Lifschitz 2006]:

$$\begin{aligned}LF_{\text{AND}}(L) &= (p_1 \& \cdots \& p_k) \rightarrow (\text{Body}(p_1) \vee \cdots \vee \text{Body}(p_k)) \\&= (\neg p_1 \vee \cdots \vee \neg p_k) \vee (\text{Body}(p_1) \vee \cdots \vee \text{Body}(p_k))\end{aligned}$$

$$LF = \{ LF_{\text{AND}}(S) \mid S \text{ is a loop in } P \}$$

- To reduce the computational difficulty (complete digraph has 2^n-1 loops), we heuristically choose a subclass of loops



$${}_4C_1 + \cdots + {}_4C_4 = 2^4-1 \text{ loops}$$

$${}_4C_1 = 4 \text{ minimal loops}$$

→ exponential reduction

Matricizing $s_I \models LF$ by $L^{LF} = 0$

- Let $S = \{p_1, \dots, p_k\}$ be a v -th loop in the positive dependency graph of $P = (C, D)$,
 $LF_{AND}(S) = (p_1 \& \dots \& p_k) \rightarrow (\text{Body}(p_1) \vee \dots \vee \text{Body}(p_k))$
- Introduce a non-negative function L^{LF} of s_I by
 - $L^{LF} = \sum_{v=1}^w (1 - \min(A(v), 1))$
 - $A(v) = S(v, :) \cdot (1 - s_I) + S(v, :) \cdot E(v) \cdot M$ ($1 \leq v \leq w$) : $s_I \models LF(S(v, :))$
 - $s_I \models \sim(p_1 \& \dots \& p_k)$
- We can prove for a binary s_I ,
$$L^{LF} = 0 \text{ iff } A(v) \geq 1 \text{ for } \forall v \text{ iff } s_I \models LF_{AND}(S) \text{ for } \forall \text{ loop } S \text{ iff } s_I \models LF$$
- $$J_L^{LF} = \partial L^{LF} / \partial s_I$$

$$= \sum_{v=1}^w [A(v) \leq 1] \cdot ([N(v) \leq 1] (S(v, :)^T) + ((S(v, :) E(v))^T \odot [N \leq 1])^T (C^{neg} - C^{pos}))^T)$$

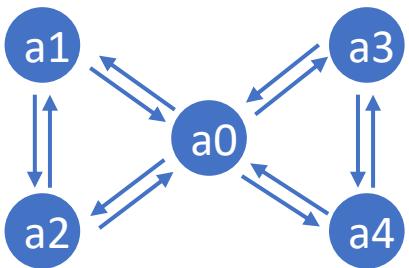
where $N(v) = S(v, :) \cdot s_I$ and $N = C^{pos} (1 - s_I) + C^{neg} s_I$

Three LF heuristics

- There are exponentially many loop formulas LF
 - elementary loops [Gebser+ 05], proper loops [Ji+ 14] introduced
- To guide minimization, we use a subset of LF associated with
 - maximal loops: LF_{max} (= SCCs, self-loop must for singleton SCC $\{a\}$)
 - minimal loops: LF_{min} (= cycles, elementary loops)
 - LF_{min} but with external supports for LF_{max} : LF_{min_max}
- $\text{comp}(P) + LF_{max}$ or $\text{comp}(P) + LF_{min}$ may exclude some supported models but never stable ones
- $u \models LF_{min_max}$ implies $u \models LF$, so $u \models \text{comp}(P) + LF_{min_max}$ is a sufficient condition for stable model u

Loopy program $P1$

- See differences between three heuristics



Program $P1$:

$$\left\{ \begin{array}{l} a0 :- a1 \wedge a2 \wedge a3 \wedge a4. \\ a1 :- a0 \vee a2. \\ a2 :- a0 \vee a1. \\ a3 :- a0 \vee a4. \\ a4 :- a0 \vee a3. \end{array} \right.$$

supported models = $\{ \{ \}, \{a1, a2\}, \{a3, a4\}, \{a0, a1, a2, a3, a4\} \}$ $(2^{4/2}-1)+1$ models
stable models = $\{ \emptyset \}$

- Loop formulas exclude some supported models

$$LF_{max} = \{ a0 \wedge a1 \wedge a2 \wedge a3 \wedge a4 \rightarrow \perp \}$$

 $\{a0, a1, a2, a3, a4\}$

$$LF_{min} = \{ a0 \wedge a1 \rightarrow a2, a0 \wedge a2 \rightarrow a1, a0 \wedge a3 \rightarrow a4, \\ a0 \wedge a4 \rightarrow a3, a1 \wedge a2 \rightarrow a0, a3 \wedge a4 \rightarrow a0 \}$$

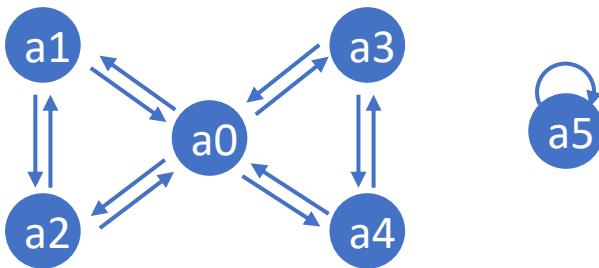
 $\{a1, a2\}, \{a3, a4\}$

$$LF_{min_max} = \{ a0 \wedge a1 \rightarrow \perp, a0 \wedge a2 \rightarrow \perp, a0 \wedge a3 \rightarrow \perp, \\ a0 \wedge a4 \rightarrow \perp, a1 \wedge a2 \rightarrow \perp, a3 \wedge a4 \rightarrow \perp \}$$

 $\{a1, a2\}, \{a3, a4\}, \{a0, a1, a2, a3, a4\}$

Loopy program $P2$

- See differences between three heuristics



Program $P2$:

```
a0 :- a1 & a2 & a3 & a4.  
a1 :- a0 V a2.  
a2 :- a0 V a1.  
a3 :- a0 V a4.  
a4 :- a0 V a3.  
a5 :- a5.  
a0 :- ~a5.
```

$$2^{4/2} + 1 = 5 \text{ supported models, 1 stable model} = \{a0, a1, a2, a3, a4\}$$

- Loop formulas exclude some supported models

$$LF_{max} = \{ a0 \& a1 \& a2 \& a3 \& a4 \rightarrow \perp, a5 \rightarrow \perp \}$$

 all except {a0..a4}

$$LF_{min} = \{ a0 \& a1 \rightarrow a2, a0 \& a2 \rightarrow a1, a0 \& a3 \rightarrow a4,$$

$$a0 \& a4 \rightarrow a3, a1 \& a2 \rightarrow a0, a3 \& a4 \rightarrow a0, a5 \rightarrow \perp \}$$

 all except {a0..a4}

$$LF_{min_max} = \{ a0 \& a1 \rightarrow \perp, a0 \& a2 \rightarrow \perp, a0 \& a3 \rightarrow \perp,$$

$$a0 \& a4 \rightarrow \perp, a1 \& a2 \rightarrow \perp, a3 \& a4 \rightarrow \perp, a5 \rightarrow \perp \}$$

 all supported models

Loopy program $P2$ (cont'd)

- The effect of loop formula heuristics

Average time and trials to find a stable model over 10 runs

<i>LF</i>	time(s)	trials	#supported model	#stable model
no <i>LF</i>	0.16	3.1	3.3	0.8
<i>LF_max</i>	4.1	1	1	1
<i>LF_min</i>	2.2	1	1	1
<i>LF_min_max</i>	timeout	5	0	0

stable model excluded

- `max_retry` 20, `max_itr` = 50
- 1 trial = (`max_retry` \times `max_itr`) computation
- 1 run = 5 trials
- time = time for 10 runs
- timeout = 240s

Loopy program $P2$ (cont'd 2)

- **Another solution** constraint:

when a model $\{a,b\}$ is found, add $(:- a \& b.)$ to constrain for next solution

Average time and trials to find a stable model

another solution constraint	time(s)	trials
not used	11.46	10,000
used	0.09	3.5

← no stable model found due to **learning bias**

- no_LF used (purely supported model computation)
- max_retry = 20, max_itr = 50
- 1 trial = $(\text{max_retry} \times \text{max_itr})$ updates
- 1 run = 10,000 trials
- time = average of 10 runs

- Useful and necessary for multiple solutions

Loopy program $P2_n$

- Generalizing $P2$ to $P2_n$ (n : even)

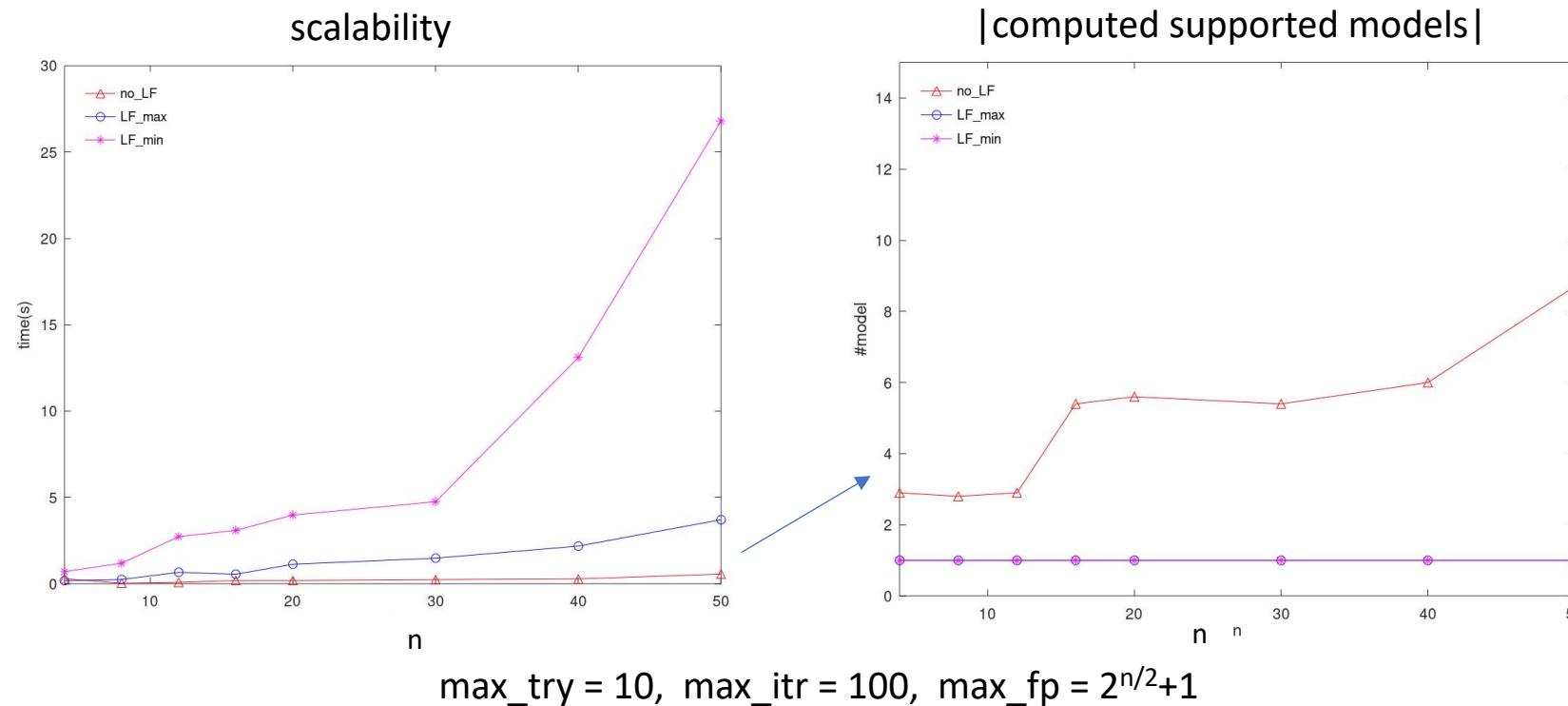
$$\left[\begin{array}{l} a(0) :- a(1) \wedge \cdots \wedge a(n). \\ \vdots \\ a(2i-1) :- a(0) \vee a(2i). \text{ for } i=1..n/2 \\ a(2i) :- a(0) \vee a(2i-1). \text{ for } i=1..n/2 \\ \vdots \\ a(n+1) :- a(n+1). \\ a(0) :- \neg a(n+1). \end{array} \right]$$

- Loop formulas

- $2^{n/2+1}$ supported models, one stable model $M_0 = \{a(0), \dots, a(n)\}$
- $LF_{max} = \{ a(0) \wedge a(1) \wedge \cdots \wedge a(n) \rightarrow \neg a(n+1), a(n+1) \rightarrow \perp \}$ allows M_0
- $LF_{min} = \{ a(1) \wedge a(2) \rightarrow a(0), a(3) \wedge a(4) \rightarrow a(0), \dots, a(n+1) \rightarrow \perp \}$ allows M_0

Loopy program $P2_n$ (cont'd)

- Scalability wrt n : time to find one stable model (left) and the total number of supported models found (right)



- no_LF is much faster than LF_max, LF_min (left)
- no_LF computes non-stable models, but LF_{max, min} don't (right)

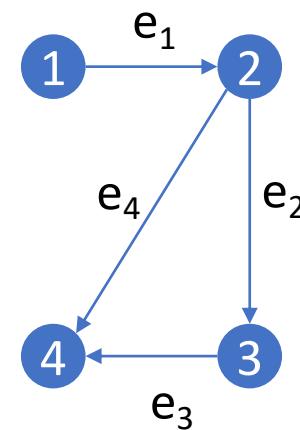
More natural program: transitive closure

- Compute the lfp of $\text{comp}(P_{\text{tr}})$

$$P_{\text{tr}} = \begin{cases} \text{tr}(X, Z) :- \text{tr}(X, Y) \& \text{tr}(Y, Z). \\ \text{tr}(1, 2). \text{tr}(2, 3). \text{tr}(2, 4). \text{tr}(3, 4). \end{cases}$$

- grounding P_{tr} generates 64 rules in 16 atoms
- matrix encoding gives $(\mathbf{C}(16 \times 64) \mathbf{D}(64 \times 128))$
- P_{tr} has > 34 supported models
- pruning by LF_{max} leaves just one stable model

Domain = {1,2,3,4}



Time to find a stable model

	time(s)
no_LF	2.8
LF_max	63.4

max_retry = 10, max_itr = 100
 LF_{min} takes too long

Adjacency matrix
of transitive closure

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

→ LF_{max} works but
takes long time

Precomputation (1)

- For a normal logic program $P = \{ a :- B \& N. \}$, put $P^+ = \{ a :- B. \}$
- Let P^u be the GL reduct of P by a stable model s ,
 - $P^u \subseteq P^+$, so $\text{Ifp}(P^u) \subseteq \text{Ifp}(P^+)$, hence every atom outside P^+ is false in *any* stable model
- Precomputation: **partial evaluation by false atoms**
 - compute $F_P = \text{HB} \setminus \text{Ifp}(P^+)$ in $O(|P|)$, where $|P|$ is the total number of atom occurrences in P [Dowling+ 84]
 - $G' = \text{conjunction } G \text{ with } \{ \neg a \in G \mid a \in F_P \} \text{ removed}$
 - $P' = \{ (a \leftarrow G') \mid (a \leftarrow G) \in P, a \notin F_P, G^+ \cap F_P = \emptyset \}$
 - $C' = \{ (\leftarrow G') \mid (\leftarrow G) \in C, G^+ \cap F_P = \emptyset \}$
- s_i is a stable model of P satisfying constraints C
iff s'_i a stable model of P' satisfying constraints C' , where $s_i = s'_i + \{ a \in F_P \text{ is false in } s_i \}$

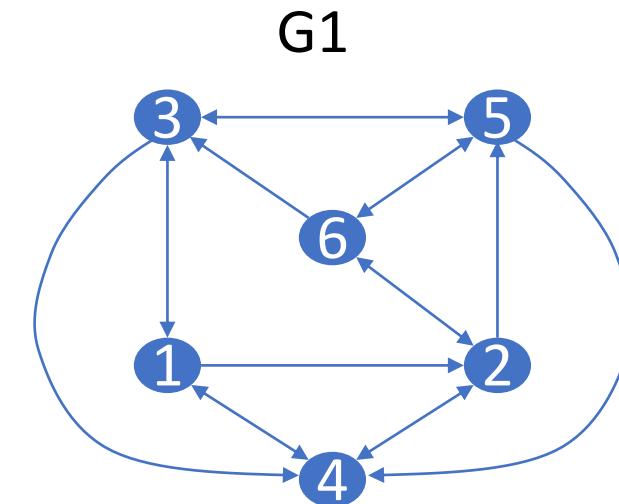
Precomputation (2)

- The effect of precomputation on the HC problem example
 - $|HB| = 72, |F_P| = 32$, so 32 atoms are detected as false, 40 atoms need to be decided

Time to find one stable model

	No precomp.	Precomp.
time(s)	2.08(2.01)	0.66(0.52)
matrix size	$D: 72 \times 197$ $C: 194 \times 144$ $\hat{C}: 67 \times 144$	$D': 40 \times 90$ $C': 90 \times 80$ $\hat{C}': 52 \times 80$

$\text{max_try} = 20, \text{max_itr} = 200, l_2 = l_3 = 0.1$
average of 10 trials



from “A User’s Guide to gringo”,
clasp, clingo, and iclingo ver.3, 2010

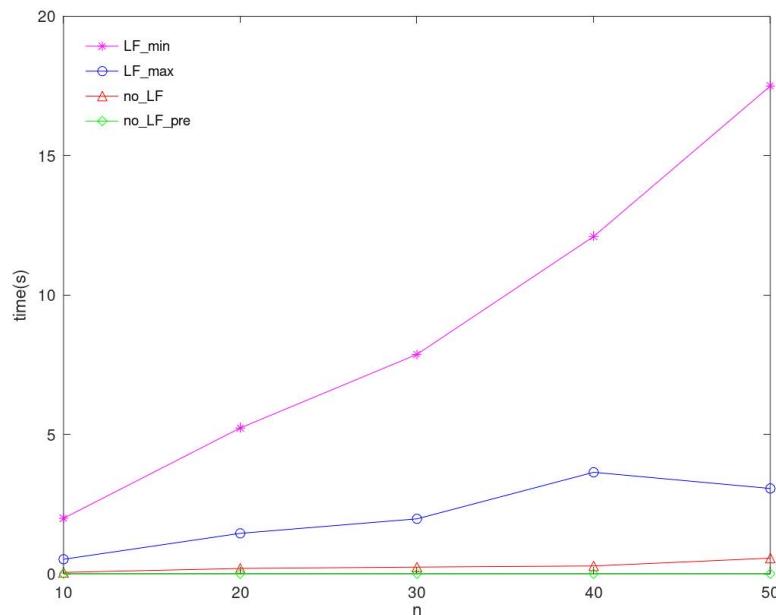
Precomputation (3)

- $P2_n$: $n+2$ atoms

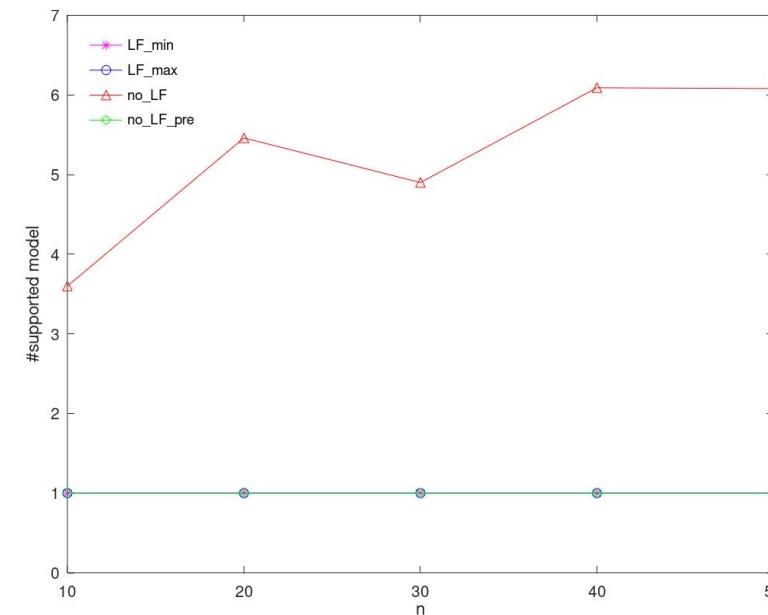
$$\left\{ \begin{array}{l} a_0 \coloneqq a_1 \& \dots \& a_n. \\ a_1 \coloneqq a_0 \vee a_2. \ a_2 \coloneqq a_0 \vee a_1. \ \dots \ a_{n-1} \coloneqq a_0 \vee a_n. \ a_n \coloneqq a_0 \vee a_{n-1}. \\ a_{n+1} \coloneqq a_{n+1}. \\ a_0 \coloneqq \sim a_{n+1}. \end{array} \right.$$

- $2^{n/2}+1$ supported models, 1 stable model $\{a_0, a_1 \dots a_n\}$ (only a_{n+1} is false)

Time to find a stable model



#computed supported models in 10 trials

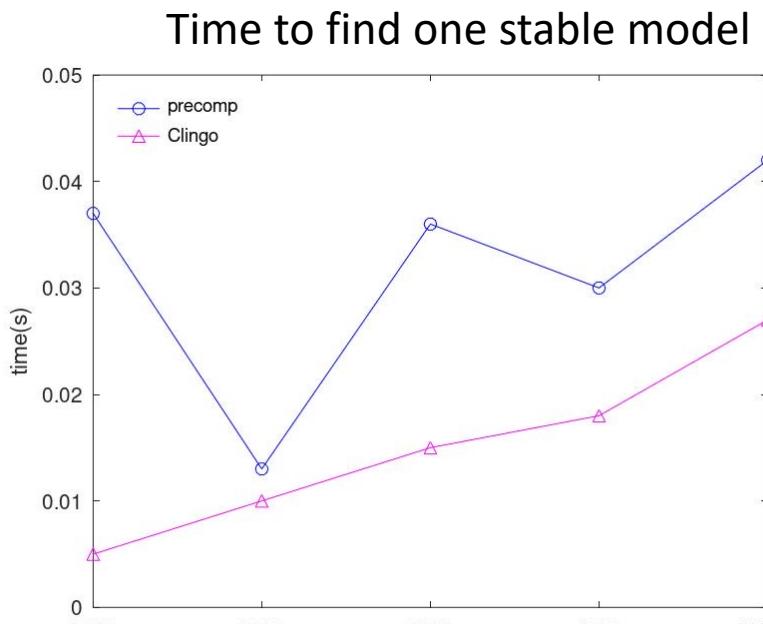


Precomputation (4)

- $P2_{-n+k}$: $n+k+2$ atoms

$$\left\{ \begin{array}{l} a_0 \coloneqq a_1 \& \dots \& a_n. \quad a_0 \coloneqq \sim a_{n+1} \& \dots \& \sim a_{n+k}. \\ a_1 \coloneqq a_0 \vee a_2. \quad a_2 \coloneqq a_0 \vee a_1. \dots \quad a_{n-1} \coloneqq a_0 \vee a_n. \quad a_n \coloneqq a_0 \vee a_{n-1}. \\ a_{n+1} \coloneqq a_{n+1}. \dots \quad a_{n+k} \coloneqq a_{n+k}. \end{array} \right.$$

- $(2^{n/2}-1)(2^k-1)+1$ supported models, 1 stable model $\{a_0, a_1 \dots a_n\}$ ($\sim a_{n+1} \dots \sim a_{n+k}$)



max_try=10, max_itr=100, $l_2 = l_3 = 0.1$, average of 10 trials

$|F_P|/|HB| = 5000/10001$ when $n = k = 5000$
 pre-computation time = 0.000005s

matrix size	$C: 10001 \times 15002$ $D: 15002 \times 20002$	$C': 5001 \times 10002$ $D': 10002 \times 10002$
-------------	--	---

In a very special case, no parameter update required and our approach comes close to clingo (even by octave implementation)

Summary

- Supported models for a propositional normal logic program P with constraints are computed in vector spaces for the 3-color problem and the Hamiltonian cycle problem
- Stable models of P are computed based on the **Lin-Zhao theorem** by computing supported models of P that satisfy AND-type **loop formulas**
- We proposed three heuristics for loop formulas to avoid computing non-stable models:
 - LF_{max} by maximal loops (SCCs)
 - LF_{min} by minimal loops (cycles)
 - LF_{min_max} by merging LF_{max} and LF_{min}
- We also proposed **precomputation** to reduce program size
- We empirically confirmed the effect of these by simple experiments
- This is an initial study of differentiable ASP using matrix encodings
- More elaboration is expected

Outline

1. Introduction: Towards Trustworthy AI
2. Background: Algebraic Approaches to Logic Programming
3. Main: A Framework for Differentiable ASP
4. Supplementary: Tools for Differentiable ASP (unpublished)

Outline of Differentiable ASP solver

- Differentiable solver for stable model semantics
- Incomplete, approximate solver

1. Parse the normal logic program P
2. Append "loop formula constraints" LF to P
3. Embed $P + LF$ into matrix
4. Using a differentiable loss function,
update the interpretation vector with gradient information

Building blocks: Matrices and Vectors (1/2)

Program

$p :- q.$
 $p :- \text{not } r.$
 $q :- p.$
 $r :- r.$



C: Program Matrix

	p	q	r	\bar{p}	\bar{q}	\bar{r}
p	0	1	0	0	0	0
p	0	0	0	0	0	1
q	1	0	0	0	0	0
r	0	0	1	0	0	0

D: Head Matrix

	p	q	r
p	1	0	0
p	1	0	0
q	0	1	0
r	0	0	1

C^P : positive part

C^N : negative part

f^T : fact vector; 1 if P has facts

p	q	r
0	0	0

x^T : Interpretation vector

$a \in I$ if 1

p	q	r
1	1	0

$[x; 1-x]^T$: Companion vector

(for multiplying with Q)

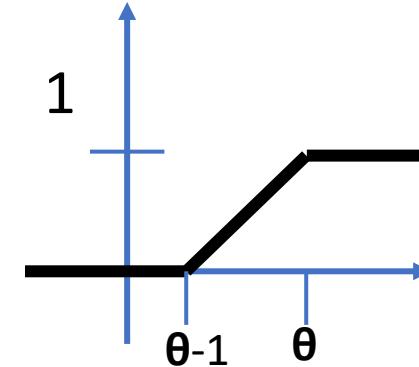
p	q	r	\bar{p}	\bar{q}	\bar{r}
1	1	0	0	0	1

Building blocks: Differentiable Thresholding (2/2)

- Parameterized thresholding

- $\theta : (n, 1)$ – vector, n=number of rules
- θ_i : number of literals in the body
- To check if the body of a rule is true
- $x_i \geq \theta_i$: body evaluates to true (then head is true)

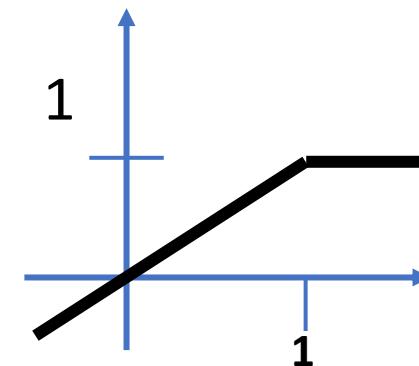
$$ReLU_{\theta}(x) = 1 - ReLU(1 - (ReLU(x - \theta)))$$



- min1 thresholding

- To check 'there is a rule such that...'
- Used with "Head Matrix" (same head rules)
- $\min(x, 1)$

$$ReLU_1(x) = ReLU(1 - x)$$



Model Loss Function ($L(x) = 0$ corresponds to stable models)

- Given interpretation vector \mathbf{x} (n_{atom} , 1)

$$L(\mathbf{x}) = \frac{1}{2} \left(\begin{array}{l} \lambda_1 \| \text{ReLU}_1(\mathbf{D}^T \text{ReLU}_\theta(\mathbf{Q}[\mathbf{x}; \mathbf{1} - \mathbf{x}] + \mathbf{f}_T - \mathbf{f}_F) - \mathbf{x} \|_2^2 + \\ \lambda_2 \| \mathbf{x} \odot (\mathbf{x} - 1) \|_2^2 + \\ \lambda_3 \| \text{ReLU}_\theta(\mathbf{C}[\mathbf{x}; \mathbf{1} - \mathbf{x}]) \|_2^2 \end{array} \right)$$

- 1. Is the model supported? ($\text{Tp}(\mathbf{x}) = \mathbf{x}$?)
- 2. Is \mathbf{x} binary?
- 3. Does \mathbf{x} satisfy all constraints?

- $L(\mathbf{x}) = 0$ iif \mathbf{x} is a stable model
 - 1. \mathbf{x} is a supported model / $\text{Tp}(\mathbf{M}) = \mathbf{M}$
 - 2. \mathbf{x} is a 0-1 binary vector
 - 3. \mathbf{x} satisfies none of the constraints

\mathbf{Q} : Program Matrix

\mathbf{C} : Constraint Matrix

\mathbf{D} : Head Matrix

\mathbf{f}_T : Fact vector

\mathbf{f}_F : False vector

\mathbf{x} : Interpretation vector

ReLU_θ : Parameterized thresholding

ReLU_1 : min1 thresholding

Loss function is similar to the one in Takemura+2022.

Gradient w.r.t \mathbf{x} was derived by hand but omitted in this presentation for brevity.

“Special” ASP rules

- Commonly used in ASP
- Choice:
 - `{a; b; c}.`
 - Choose from all possible combinations of a,b,c: `{a} {b} ... {a,c} ... {a,b,c}`
- Cardinality constraints:
 - `{ assign(N,C) : color(C) } = 1 :- node(N).`
 - Assign only 1 color to a node, e.g., graph coloring
- Sum statement:
 - `:- #sum { Price,Item : buy(Item), item(Item,Price) } > budget.`
 - The sum of item price must not exceed the budget, e.g., knapsack
- Minimize statement:
 - `# minimize { C/S,X : hotel(X), cost(X,C), star(X,S) }.`
 - Minimize the cost per star rating

Encoding special ASP rules in Program Matrix

```
node(1..2).  
color(1..2).  
{assign(N,C) : color(C)} = 1 :- node(N).
```

Input program

clingo (gringo)

```
node(1). node(2). color(1). color(2).  
#delayed(3). #delayed(4).  
#delayed(3) <=>  
1<=#count{0,assign(1,1):assign(1,1);0,assign(1,2):assign(1,2)}<=1  
{assign(1,1);assign(1,2)}:-#delayed(3).  
#aux(9) :- 1{assign(1,1)=1,assign(1,2)=1}.  
#aux(10) :- 2{assign(1,1)=1,assign(1,2)=1}.  
#aux(11) :- #aux(9),not #aux(10).  
:-#delayed(3),not #aux(11).  
#delayed(4) <=>  
1<=#count{0,assign(2,1):assign(2,1);0,assign(2,2):assign(2,2)}<=1  
{assign(2,1);assign(2,2)}:-#delayed(4).  
#aux(14) :- 1{assign(2,1)=1,assign(2,2)=1}.  
#aux(15) :- 2{assign(2,1)=1,assign(2,2)=1}.  
#aux(16) :- #aux(14),not #aux(15).  
:-#delayed(4),not #aux(16).
```

1. #delayed – special atom
2. Cardinality turns into weighted choice rules

! Cannot directly translate into Program Matrix

Grounded by *clingo (gringo)*

Lp2mat: a translation library

INPUT: *clingo*-compatible ASP program

OUTPUT: Normal rules WITHOUT extended statements (matrix friendly)

Supported statements: #sum, #minimize (#maximize), #count

Not supported: #project, #external, #assume, #heuristic, #theory

How Lp2mat works

- 1. Grounding with *gringo*
- 2. Rule re-writing and expansion

Translate weighted cardinality rules into normal rules

Example: #sum statement

```
#const budget=20
:- #sum { Price, Item : buy(Item), item(Item, Price) } > budget.
    "The sum of item prices must not exceed the budget"
#aux(7):-21{buy(apple)=10,buy(banana)=10,buy(chocolate)=20,buy(crisps)=25,buy(soda)=30}.
```

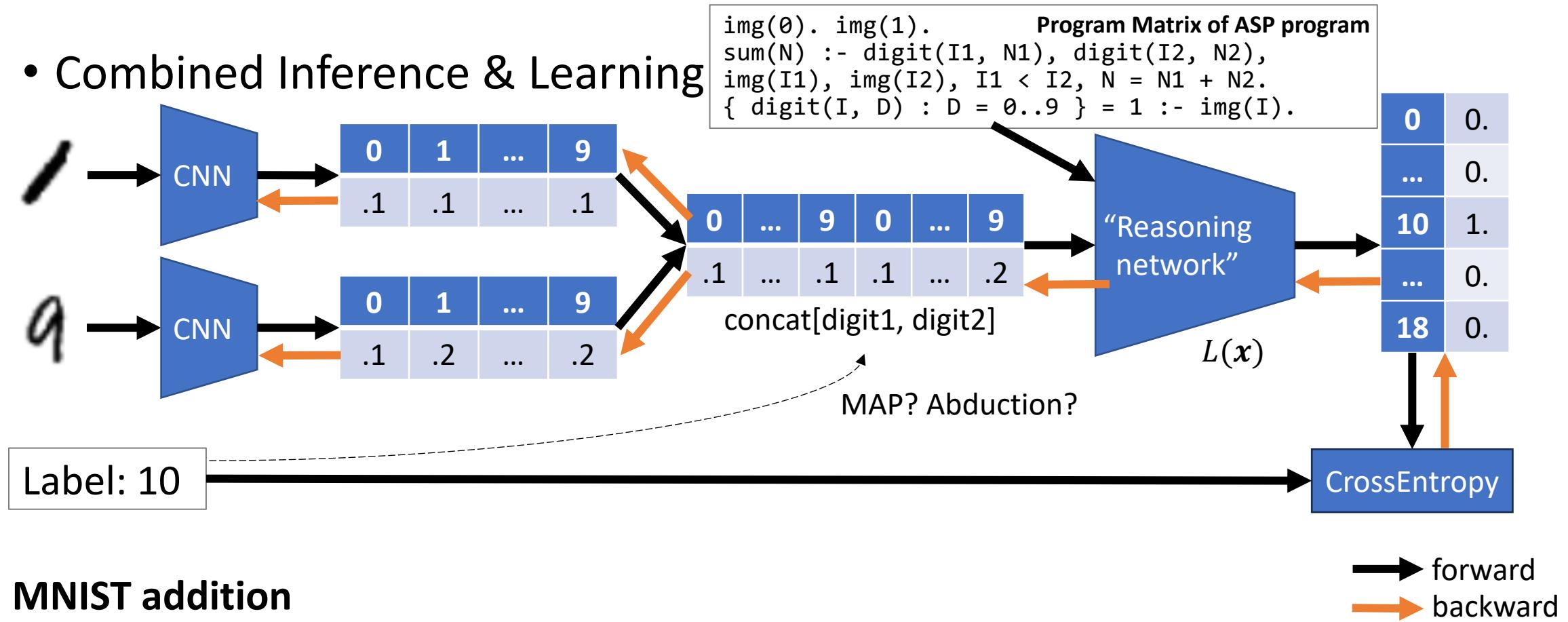
Clingo's version (choice begins with 21-weight)

1 0 1 7 1 21 5 8 10 9 10 10 20 11 25 12 30 (ASP intermediate format)

```
:-#aux(7) a_12. (#aux(7) cannot be true) %buy(soda)
a_7 :- a_14_aux_1_21.
a_14_aux_1_21 :- a_11.  %% buy(crisps)
a_14_aux_1_21 :- a_15_aux_2_21.
a_15_aux_2_21 :- a_10, a_16_aux_3_1.  %% buy(chocolate)
a_16_aux_3_1 :- a_8.  %% buy(apple)
a_16_aux_3_1 :- a_9.  %% buy(banana)
:- a_7. %% NOT soda or crisps or (chocolate+apple) or chocolate(banana)
```

NeSy Applications

- Combined Inference & Learning



MNIST addition

Inference: Given $(1, 9) \in \text{Dataset}$, infer 10.

Learning: Given $(1, 9, 10) \in \text{Dataset}$, train a model that infers 10.

*learning to solve the addition task, not learning a logic program

Summary

- Differentiable loss function for computing stable models
 - Search is still a hard problem
- Lp2mat: Logic program to Program Matrix translator
- Neural-symbolic inference & learning:
 - Learning without direct supervision labels