
Automated Hybrid Grounding Using Structural
and Data-Driven Heuristics (Extended Abstract)

Alexander Beiser1[0009−0009−4252−1043], Markus Hecher2[0000−0003−0131−6771],
and Stefan Woltran1[0000−0003−1594−8972]

1 TU Wien, Favoritenstrasse 9–11, Vienna, 1040, Austria
2 Univ. Artois, CNRS, UMR8188, Computer Science Research Center of Lens, France

Introduction. State-of-the-art Answer Set Programming (ASP) [12, 13] systems
(SOTA-systems) work according to the so-called ground-and-solve paradigm: In
the first step, a program Π is grounded by instantiating the variables of each
rule r ∈ Π by the domain values [14]. In the second step, the grounded program
G(Π) is solved by extended SAT-like systems [11]. For grounding, SOTA-systems
typically rely on SOTA-grounders, which use the so-called bottom-up/semi-naive
grounding approach [10]. Grounding a rule r ∈ Π with SOTA-grounders, yields
an exponentially larger number of ground rules r′ ∈ G(r). Let dom(Π) be the
domain of the program Π and #var(r) be the number of variables of rule r, then
the grounding size of r is3: |G(r)| ≈ |dom(Π)|#var(r). For the entire program, this
translates to |G(Π)| ≈ |Π| · |dom(Π)|#var (for detailed definitions, see the full
paper [2]). This blow-up can yield instances where the grounding size prohibits
the program from being solved, which is called the grounding bottleneck [8].

Body-decoupled grounding (BDG) [3] is an alternative grounding procedure4

rooted in complexity theory. BDG partially alleviates the grounding bottleneck by
rewriting non-ground normal into ground disjunctive programs. This is done by
decomposing rules into (body) literals and grounding these literals individually,
resulting in a grounding size that is only dependent on the maximum arity
a of a program and a constant c depending on the rule type5: |BDG(Π)| ≈
|Π|·|dom(Π)|c·a. Although the theoretical properties of BDG are highly promising,
a naive application of BDG to problem instances is rarely beneficial. The reason
is that BDG pushes effort spent in grounding to the solving phase, thereby
introducing additional guesses. Similarly, naively using partial application via
hybrid grounding will also not bring substantial benefits [1]. Therefore, it is
essential to know when the usage of BDG is beneficial.

Contributions. In the paper accompanying this extended abstract, we present
heuristics called automated hybrid grounding. This heuristics decides when the
usage of BDG is beneficial, based on structural and data-driven properties.
Additionally, we implemented the heuristics in the newground3 prototype and
conducted experiments that are highly promising [2]. In this extended abstract,

3 For brevity we write ≈ |dom(Π)|#var(r) instead of O
(
|dom(Π)|#var(r)

)
.

4 We limit our discussion of alternative techniques to BDG and briefly mention other
promising approaches, such as lazy-grounding [16] or compilation-based grounding [7].

5 In the following, we assume c = 1, which holds for constraints.

2 A. Beiser et al.

we focus on the general idea of the heuristics and briefly mention our empirical
results.

Heuristics. On a high level, the heuristics follows the dependency graph of the
non-ground program bottom-up and decides for each rule whether to ground
it with SOTA-grounders or BDG. The decision for each rule is based on two
parts: (a) First, the analysis of the structure of a rule and its corresponding
worst-case grounding size. Whenever the worst-case grounding size of BDG is
strictly smaller than that of SOTA-grounders, (b) the data part takes the final
decision whether to ground with BDG.
(a): The structure of a rule has an impact on whether a rule r ∈ Π shall be
grounded with BDG or with SOTA-grounders. Previously, the decision whether
to ground a rule by BDG was guided by intuition on the denseness of a rule.
By introducing heuristics, we transition from intuition to computation, by an-
alyzing the variable graph6 for each rule r ∈ Π, and performing a minimal
tree decomposition upon this graph with treewidth TWr. Recall that it is well
known that rewriting a rule based on a (minimal) tree decomposition may reduce
the grounding size of the rule significantly, as demonstrated by Lpopt [4] and
integrated into idlv [5]. These results are integrated into the heuristics. We
consider BDG to be applicable for a rule r ∈ Π if the worst-case grounding
size of BDG ≈ |dom(Π)|a is smaller than the worst-case grounding size of the
treewidth-aware rewritten rule ≈ | dom(Π)|TWr+1.
(b): The instance has a significant effect on whether grounding with BDG is
beneficial or not. This stems from the fact that the grounding size of BDG is
overwhelmingly dependent on the domain size, but not the shape or denseness
of the instance. The grounding sizes of SOTA-grounders and BDG are estimated.
For SOTA-grounders we take inspiration from the literature [9, 5], while for BDG,
we develop a novel procedure to estimate the grounding size.

Empirical Results. We implemented the heuristics in our prototype newground37

and conducted experiments on both grounding-heavy and solving-heavy bench-
marks. The solving-heavy benchmarks were taken from the 2014 ASP Competi-
tion [6], while the grounding-heavy benchmarks were taken from the BDG and
Hybrid Grounding papers [3, 1]. newground3 grounds and solves more instances
on grounding-heavy instances than SOTA-systems, while achieving approximately
the same results on solving-heavy instances.

Conclusion. The paper underlying this extended abstract introduces automated
hybrid grounding, which is a heuristics that decides when the usage of BDG is
beneficial [2]. This heuristics is based on a structural part, which is driven by the
treewidth of the variable graph, and a data part that estimates the grounding
sizes of BDG and SOTA-grounders. The empirical results are promising.

6 The variable graph G = (V,E) is constructed for a rule r ∈ Π, where V are the
variables in r, and e ∈ E iff two variables occur in the same predicate literal.

7 Supplementary material and prototype available at:
https://github.com/alexl4123/newground.

Automated Hybrid Grounding (Extended Abstract) 3

Acknowledgments

This research was funded in part by the Austrian Science Fund (FWF), grants
10.55776/COE12 and J 4656. This research was supported by Frequentis.

References
1. Beiser, A., Hecher, M., Unalan, K., Woltran, S.: Bypassing the ASP Bottleneck:

Hybrid Grounding by Splitting and Rewriting. In: IJCAI24. pp. 3250–3258 (2024).
https://doi.org/10.24963/ijcai.2024/360

2. Beiser, A., Woltran, S., Hecher, M.: Automated hybrid grounding
using structural and data-driven heuristics. TPLP p. 1–18 (2025).
https://doi.org/10.1017/S1471068425100173

3. Besin, V., Hecher, M., Woltran, S.: Body-Decoupled Grounding via Solving: A
Novel Approach on the ASP Bottleneck. In: IJCAI22. pp. 2546–2552. IJCAI (2022).
https://doi.org/10.24963/ijcai.2022/353

4. Bichler, M., Morak, M., Woltran, S.: lpopt: A Rule Optimization Tool for An-
swer Set Programming. In: LOPSTR16. LNCS, vol. 10184, pp. 114–130 (2016).
https://doi.org/10.1007/978-3-319-63139-4_7

5. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: Optimizing Answer Set Computation
via Heuristic-Based Decomposition. In: PADL18. LNCS, vol. 10702, pp. 135–151
(2018). https://doi.org/10.1007/978-3-319-73305-0_9

6. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the
Fifth Answer Set Programming Competition. Artif. Intell. 231, 151–181 (2016).
https://doi.org/10.1016/j.artint.2015.09.008

7. Dodaro, C., Mazzotta, G., Ricca, F.: Compilation of Tight ASP Programs. In:
ECAI23. FAIA, vol. 372, pp. 557–564 (2023). https://doi.org/10.3233/FAIA230316

8. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
Applications of Answer Set Programming. Künstl. Intell. 32(2), 165–176 (2018).
https://doi.org/10.1007/s13218-018-0548-6

9. Garcia-Molina, H., Ullman, J., Widom, J.: Database systems: the complete book.
Pearson; 2nd edition (2008)

10. Gebser, M., Kaminski, R., Schaub, T.: Grounding Recursive Aggregates: Preliminary
Report. In: GTTV15 (2015). https://doi.org/10.48550/arXiv.1603.03884

11. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set
solving: From theory to practice. Artif. Intell. 187, 52–89 (2012).
https://doi.org/10.1016/j.artint.2012.04.001

12. Gelfond, M., Leone, N.: Logic programming and knowledge representation—The A-
Prolog perspective. Artif. Intell. 138(1), 3–38 (2002). https://doi.org/10.1016/S0004-
3702(02)00207-2

13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and
disjunctive databases. New. Gener. Comput. 9(3), 365–385 (1991).
https://doi.org/10.1007/BF03037169

14. Kaminski, R., Schaub, T.: On the Foundations of Grounding in Answer Set Program-
ming. TPLP 23(6), 1138–1197 (2023). https://doi.org/10.1017/S1471068422000308

15. Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-
Ordering Methods. In: LPNMR01. LNCS, vol. 2173, pp. 280–294 (2001).
https://doi.org/10.1007/3-540-45402-0_21

16. Weinzierl, A.: Blending Lazy-Grounding and CDNL Search for Answer-Set Solving.
In: LPNMR17. LNCS, vol. 10377, pp. 191–204 (2017). https://doi.org/10.1007/978-
3-319-61660-5_17

4 A. Beiser et al.

Appendix with an Example

Consider the program Π shown in the listing below. We want to partition Π
properly into ΠH and ΠG , where ΠH is grounded by BDG and ΠG is grounded
by SOTA-grounders. We assume to be given an instance of a complete graph
defined by e/2. Line (1) (r1) guesses subgraphs defined by f/2. Line (2) (r2)
ensures that the subgraphs are undirected. Line (3) (r3) prohibits lines in the
subgraph containing at least 4 vertices and Line (3) (r4) prohibits cliques of size
at least 3. What is the proper partition?

1 {f(X,Y)} ← e(X,Y).
2 f(Y,X) ← f(X,Y).
3 ← f(X1 ,X2), f(X2,X3), f(X3 ,X4), X1 ̸= X2, X2 ̸= X3 , X3 ̸= X4.
4 ← f(X1 ,X2), f(X1,X3), f(X2 ,X3), X1 ̸= X2, X1 ̸= X3 , X2 ̸= X3.

Structure: A proper partition is ΠG = {r1, r2, r3} and ΠH = {r4}: For r1 and
r2 there are #var(r) = 2 and a = 2 - therefore, the asymptotic grounding sizes of
BDG and SOTA-grounders match. In this case it is never useful to ground with
BDG, as BDG introduces additional guesses8. r3 has #var(r) = 4 and a = 2,
therefore a naive partition would use this rule with BDG. However, observe the
structure of the variable graph of r3. Using structural decomposition techniques
such as Lpopt [4] (and implemented in IDLV [5]), which compute a minimal tree
decomposition of the variable graph, we obtain rewritten rules with at most 2
variables. Therefore, the asymptotic grounding sizes match, where the usage of
BDG is not beneficial. Lastly, rule r4 has #var(r) = 3 and a = 2. In this case
structural decomposition yields no benefit, as the rewritten rules have 3 variables
as well. Therefore, the asymptotic grounding size of BDG is smaller than that
of SOTA-grounders, and so r4 ∈ ΠH. Therefore, we consider rule denseness as
the treewidth of the variable graph of the rule and consider this as the structural
part of our heuristics - we are left to show what the data-driven part is.
Data: Let us define a program Π ′ = {r1, r4}. In the following we are focusing
on the grounding size of solely r4 ∈ Π ′. Let us consider two types of input data:
The first type is a (dense) complete graph of size n. The grounding size of BDG
is ≈ n2, whereas the grounding size of SOTA-grounders is ≈ n3. However, we
obtain entirely different results when we consider other types of input data. Let
the second type of input data be a (sparse) line input graph of size n. The
grounding size of BDG remains ≈ n2, whereas not a single rule is instantiated for
SOTA-grounders. To incorporate this difference in data denseness, we estimate
the grounding sizes of SOTA-grounded rules with methods from the literature [15,
9, 5], and introduce a novel method for estimating the grounding size of BDG.

8 e/2 is stratified, which enables SOTA-grounders to use optimizations. Current BDG
implementations cannot rewrite choice rules; normal rules r1, r2 introduce overhead.

